AMD 1

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 3:
General-Purpose and
System Instructions

Advanced Micro Devices £\

© 2013 — 2017 Advanced Micro Devices Inc. All rights reserved.

The information contained herein is for informational purposes only, and is subject to change without notice.
While every precaution has been taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to
the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including
the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the
operation or use of AMD hardware, software or other products described herein. No license, including implied
or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations
applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties
or in AMD's Standard Terms and Conditions of Sale.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and 3DNow! are trademarks of Advanced
Micro Devices, Inc. Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
Contents

Revision History. .. .cooii ittt ittt it iiiiiittieieeeeneneneescnsncnannnns xvii

g) 1 P XXxi

About This BooK. Xx1

AUIENCEo Xxi

OrganizZationottt ettt et e e e e e e posel

Conventions and Definitions i e xXil

Related Documents. i XXXiii

1 Instruction Encoding.ooiuiiiiiiiiiiiiiiiiiiiiiieieneeneeneensennnnns 1

1.1 Instruction Encoding OVerview.ottt 1

1.1.1 Encoding Syntax. it e e 1

1.1.2 Representation in MEmMOTY vt vttt ittt e e e e ettt 4

1.2 Instruction Prefixes 5

1.2.1 Summary of Legacy Prefixes 6

1.2.2 Operand-Size Override Prefix i, 7

1.2.3 Address-Size Override Prefix. o 9

1.2.4 Segment-Override Prefixes. i 10

12,5 Lock Prefix . ..ot 11

1.2.6 Repeat PrefiXes. . ..o ot e e 12

127 REX Prefix . ..ot 14

1.2.8 VEX and XOP Prefixeso oot 16

1.3 OPCOe. . .ottt 16

1.4 ModRM and SIB Bytesot e 17

141 ModRM Byte Formatoi e e e e e 17

1.42 SIB Byte Format. 18

1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes 20

1.4.4 Operand Addressingin 64-bitMode 23

1.5 Displacement Bytes i 24

1.6 Immediate Byteso 24

1.7 RIP-Relative Addressingvt ittt e ettt et 24

L7 T ENCOdIng.ot e 25

1.7.2 REX Prefix and RIP-Relative Addressing, 25

1.7.3 Address-Size Prefix and RIP-Relative Addressing 25

1.8 Encoding Considerations Using REX 26

1.8.1 Byte-Register Addressing.ttt et 26

1.8.2 Special Encodings for Registers.ttt 26

1.9 Encoding Using the VEX and XOP Prefixes 29

1.9.1 Three-Byte Escape Sequencest 29

1.9.2 Two-Byte Escape Sequencet 32

2 InStruction OVerview.ottt tieeneeneeneeeeenecneencensensnns 35

2.1 INStruCtion GrOUPS oottt et e e e 35

2.2 Reference-Page Format 36

2.3 Summary of Registers and Data Types 38

Contents i

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
2.3.1 General-Purpose InStructions vttt 38
2.3.2 System INStruCtionS.ottt e e 41
2.3.3 SSE INStIUCHIONS . . . o\ vttt ettt e e e e e e e e 43
2.3.4 64-Bit Media Instructions. i 48
2.3.5 x87 Floating-Point InStructions, 50
2.4 Summary of EXCeptions.t 51
2.5 D077 5 T L 52
2.5.1 MNeMONIC SYNEAX. . o o\ttt e ettt e et e e et e e 52
2.5.2.0pC0de SYNtaX . .o\ vt ittt e e 55
2.5.3 Pseudocode Definition 57
3 General-Purpose Instruction Referenceciiiiiiiiiiiiiiiiiinneennns 71
A A A 73
A A . 74
A AM L 75
A S 76
ADC . L 77
AD X 79
A D . L 80
AD O X . o 82
AN DD . L 83
ANDN L 85
BEXTR
(register TOTm)ot 87
BEXTR
(immediate form). 89
BLCFILL . . .o e 91
BLCT .. 93
BLCIC . 95
BLOM K . . 97
B S . 99
BLSFILL . .o 101
BT, o 103
BLSIC . 105
BL S M S K . .o 107
B SR .o 109
BOUND . . 111
BSF 113
B R 114
BSOS WA P . . 115
BT . 116
BT . 118
BT R .o 120
BT S 122
BZHI . . 124
CALL (NeaT) . . .t o ittt e e e e e e e e e e e 126
CALL (Far) . .o e 128
CBW
ii Contents

AMDA

24594—Rev. 3.25—December 2017

CMC ..

CMPSQ oo
CMPXCHG . ..o

CMPXCHGS8B

JMP(Near). ...
JMP(Far)....... i

AMDG64 Technology

Contents

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
LFS
LGS
LSS 201
LB A L 203
LEAVE. 205
LEENCE ..o 206
LW P C B . .ot 207
LODS
LODSB
LODSW
LODSD
LOD SO . ittt 210
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ . . 212
LW PIN S . L 214
LW PV AL . o 216
LZ N T e 219
MEENCE . . . 221
MONITORX . .ottt et e e e e e e e 222
MOV L 224
MOV BE . . 227
MOV D . L 229
MOVMSKPD ..o 233
MOVM S KPS . . 235
MOVNTL . . o e e e e e e e 237
MOVS
MOVSB
MOVSW
MOVSD
MOV S . .ot 239
MOV S X L e 241
MOV S XD .ot 242
MOV Z X . 243
MU L . 244
MU X . oot e 246
MW AL T X . ottt e e e e e e e 248
NEG . o 250
N O . . 252
NOT . 253
O R 254
OU T . e e e 257
OUTS
OUTSB
OUTSW

iv Contents

AMDA

24594—Rev. 3.25—December 2017

POPF
POPFD

PUSHAD.

PUSHF
PUSHFD

PUSHFQ . ..ot
RCL .ot

RDFSBASE

RDGSBASE
RDRAND
RDSEED i
RET(Near)iiiiiiin...
RET (Far)............
ROL ...

AMDG64 Technology

Contents

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
SHR 320
SHRD . . .o 322
SHR X . o 324
SLW P C B . . 326
ST C L 328
ST D .o 329
STOS
STOSB
STOSW
STOSD
ST O S Q. o et 330
SUB Lo 332
TIMSK C . 334
TS T et 336
TZONT . 338
LM S K . o e 340
UDO, UDL, UD 2 . .. e e e e e e e e 342
WRFSBASE
WRGSBASE . . .o 343
XADD .o 344
XCHG . e 346
X AT . o e 348
XL AT B . 348
O R . 349

4 System Instruction Reference...........coiiuiiiiiiiiiiiiiiiiiiiienenenennns 353
ARPL . 355
CL A C . 357
CLGI o 358
L. e 359
G S o 361
BT . 362
INT 3 363
IN VD L 366
INV L PG. . . 367
IN VL P GA . o 368
IRET
IRETD
IRETQ . .o 369
LA R e 375
LG T . . e 377
LT e 379
L DT . et e 381
LM S 383
LS e 384
TR o 386
MONITOR. . . o e 388
MOV CRI . . oottt e e e e e e e e e e 390

Vi Contents

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
MOV DRN . e e 392

MW AT 394
R M SR . . e 396

R PMC . .. 397
R T SC . 399
RDTSCP ..ot e 401

RO . 403

SG DT . . o 405

S DT . o 406
SKINIT ..o e e e e e e 407

S DT . ot 409

S S W L 411

ST A C . 412

STl . o 413

ST Gl . o 415

ST R . 416

S A PGS . . 417

SY SCALL ..o 419
SYSENTERo 423

SY SEXIT . ..ot 425

SY SRET . . 427

VER R . . 431

VERW L 433
VMLOAD . . 434

VMM CALL . . 436

VM RUN L 437
VM S AV E . . 442
WBIN VY D . 444

W RM SR L 445
Appendix A Opcode and Operand Encodingsc.civiiiiiiiiiiiiinnenenns 447
A.l OPCOAE M S . . ot ottt et e e e e e e 450
Legacy Opcode Maps . ..ot e 450
BDNOW! T OPCOAES . .t ot ettt e e e e e e e e 467

X87 ENcCodingso e 470
rFLAGS Condition Codes for x87 Opcodesovit i 479
Extended Instruction Opcode Maps.ottt 479

A2 Operand Encodingso ittt e e e e e e e e 490
ModRM Operand Referencest 490

SIB Operand Referenceso e e 495
Appendix B General-Purpose Instructions in 64-Bit Mode 499
B.1 General Rules for 64-Bit Modeo 499
B.2 Operation and Operand Size in 64-BitMode 500
B.3 Invalid and Reassigned Instructions in 64-BitMode 525
B.4 Instructions with 64-Bit Default Operand Size 526
B.5 Single-Byte INC and DEC Instructions in 64-BitMode. 527
B.6 NOPIn64-Bit Mode e e 528

Contents Vii

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
B.7 Segment Override Prefixes in 64-BitMode, 528
Appendix C Differences Between Long Mode and Legacy Mode. 529
Appendix D Instruction Subsets and CPUID Feature Flags........................ 531
D.1 Instruction Set OVerVIEWottt e e e e e 532

D.2 CPUID Feature Flags Related to Instruction Support., 534

D3 Instruction List.o 536
Appendix E Obtaining Processor Information Via the CPUID Instruction........... 601
E.1 Special Notational Conventionsuuitnentnennnn e, 601

E.2 Standard and Extended Function Numbers. 602

E.3 Standard Feature Function Numbers. 602
Function 0h—Maximum Standard Function Number and Vendor String. 602

Function 1h—Processor and Processor Feature Identifiers. 603

Functions 2h—4h—Reserved 606

Function 5Sh—Monitor and MWait Features 606

Function 6h—Power Management Related Features 607

Function 7h—Structured Extended Feature Identifiers. 608

Functions 8h—Ch—Reserved. 609

Function Dh—Processor Extended State Enumeration. 609

Functions 4000 0000h—4000 FFh—Reserved for HypervisorUse 612

E.4 Extended Feature Function Numbers i, 612
Function 8000 _0000h—Maximum Extended Function Number and Vendor String 612

Function 8000 0001h—Extended Processor and Processor Feature Identifiers. 613

Functions 8000 0002h—8000 0004h—Extended Processor Name String 616

Function 8000 _0005h—L1 Cache and TLB Information........................... 616

Function 8000 0006h—L2 Cache and TLB and L3 Cache Information 618

Function 8000 _0007h—Processor Power Management and RAS Capabilities 620

Function 8000 0008h—Processor Capacity Parameters and Extended Feature Identification .

622

Function 8000 0009h—Reserved. 623

Function 8000 000Ah—SVM Featuresco i, 624

Functions 8000 000Bh—8000 0018h—Reserved.ccvtiiinnnnnan... 625

Function 8000 _0019h—TLB Characteristics for IGBpages........................ 625

Function 8000 001 Ah—Instruction Optimizationsc.ooienaon... 626

Function 8000 001Bh—Instruction-Based Sampling Capabilities. 627

Function 8000 001Ch—Lightweight Profiling Capabilities. 627

Function 8000 001Dh—Cache Topology Information. 629

Function 8000 001Eh—Processor Topology Information 631

CPUID Fn8000_001f—Encrypted Memory Capabilities 632

E.5 Multiple Core Calculationttt e e et e e e 633

Legacy Method i e e e e 633

Extended Method (Recommended). i, 633

Appendix F Instruction Effects on RFLAGS........ ...t iiiiiiiiiiiiiininnss 637
1T G 641
viii Contents

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

Contents iX

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

X Contents

AMDA

24594—Rev. 3.25—December 2017

Figures

AMDG64 Technology

Figure 1-1. Instruction Encoding Syntax
An Instruction as Stored in Memory
REX Prefix Format
ModRM-Byte Format
SIB Byte Format
Encoding Examples Using REX R, X, and B Bits
VEX/XOP Three-byte Escape Sequence Format
VEX Two-byte Escape Sequence Format
Format of Instruction-Detail Pages
General Registers in Legacy and Compatibility Modes
General Registers in 64-Bit Mode
Segment Registers
General-Purpose Data Types
System Registers
System Data Structures
SSE Registers
128-Bit SSE Data Types
SSE 256-bit Data Types
SSE 256-Bit Data Types (Continued)
64-Bit Media Registers
64-Bit Media Data Types

Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.

x87 Registers
x87 Data Types
Syntax for Typical Two-Operand Instruction
MOVD Instruction Operation
ModRM-Byte Fields
ModRM-Byte Format
SIB Byte Format
AMD64 ISA Instruction Subsets

Xi

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

Xii Figures

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

Tables

Table 1-1. Legacy Instruction Prefixes i i 7
Table 1-2. Operand-Size OVerridesottt e e e 8
Table 1-3. Address-Size OVerrides.ottt e 9
Table 1-4. Pointer and Count Registers and the Address-Size Prefix 10
Table 1-5. Segment-Override Prefixes. i e e 11
Table 1-6. REP Prefix Opcodesottt e e e e e e e e e e e 12
Table 1-7. REPE and REPZ Prefix Opcodesot ettt e 13
Table 1-8. REPNE and REPNZ Prefix Opcodesttt 14
Table 1-9. Instructions Not Requiring REX Prefix in 64-BitMode 15
Table 1-10. ModRM.reg and .r/m Field Encodings i, 18
Table 1-11. SIB.scale Field Encodings it 19
Table 1-12. SIB.index and .base Field Encodings i, 20
Table 1-13. SIB.base encodings for MOdARM.t/m=100bttt 20
Table 1-14. Operand Addressing Using ModRM and SIBBytes, 21
Table 1-15. REX Prefix-Byte Fields i e e 23
Table 1-16. Encoding for RIP-Relative Addressing. it 25
Table 1-17. Special REX Encodings for Registersc.oiiiiii i, 27
Table 1-18. Three-byte Escape Sequence Field Definitions 30
Table 1-19. VEX.map select Encoding.t 30
Table 1-20. XOP.map select Encoding. i e 31
Table 1-21. VEX/XOP.vvvv Encoding e e e 32
Table 1-22. VEX/XOP.pp Encoding e et e e e e 32
Table 1-23. VEX Two-byte Escape Sequence Field Definitions. 33
Table 1-24. Fixed Field Values for VEX 2-Byte Format. 33
Table 2-1. Interrupt-Vector Source and Cause.vti ittt et e ettt 52
Table 2-2. +rb, +rw, +rd, and +rq Register Value 56
Table 3-1. Instruction Support Indicated by CPUID Feature Bits 71
Table 3-2. Processor Vendor Return Values i 159
Table 3-3. Locality References for the Prefetch Instructions. 275
Table 4-1. System Instruction Support Indicated by CPUID Feature Bits. 353
Table A-1. Primary Opcode Map (One-byte Opcodes), Low Nibble 0—7h 451
Table A-2. Primary Opcode Map (One-byte Opcodes), Low Nibble 8—Fh 452
Table A-3. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 0-7h 454
Table A-4. Secondary Opcode Map (Two-byte Opcodes), Low Nibble 8—Fh...................... 456

Tables Xiii

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Table A-5. rFLAGS Condition Codes for CMOVcc, Jec,and SETCC, 458
Table A-6. ModRM.reg Extensions for the Primary Opcode Map1 """""""""""""""""""" 459
Table A-7. ModRM.reg Extensions for the Secondary Opcode Map............................. 461
Table A-8. Opcode 01h ModRM EXtensionsuuintininrei i iieiiieannn. 462
Table A-9. OF 38h Opcode Map, Low Nibble =[0h:7h], 464
Table A-10. OF 38h Opcode Map, Low Nibble=[8h:Fh]............... o ii.... 465
Table A-11. OF 3Ah Opcode Map, Low Nibble=[0h:7h] 466
Table A-12. O0F 3Ah Opcode Map, Low Nibble=[8h:Fh] 466
Table A-13. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 0—7h.......................... 468
Table A-14. Immediate Byte for 3DNow!™ Opcodes, Low Nibble 8Fh. 469
Table A-15. x87 Opcodes and MOdRM EXtensionsuuurururer et einnnenen. 471
Table A-16. rFLAGS Condition Codes for FCMOVCCottt 479
Table A-17. VEX Opcode Map 1, Low Nibble=[0h:7h] 480
Table A-18. VEX Opcode Map 1, Low Nibble = [0h:7h] Continued. 481
Table A-19. VEX Opcode Map 1, Low Nibble=[8h:Fh] 482
Table A-20. VEX Opcode Map 2, Low Nibble=[0h:7h] i ... 483
Table A-21. VEX Opcode Map 2, Low Nibble=[8h:Fh] 484
Table A-22. VEX Opcode Map 3, Low Nibble=[0h:7h] 485
Table A-23. VEX Opcode Map 3, Low Nibble=[8h:Fh] 486
Table A-24. VEX Opcode GIOUPSo v ittt ettt e et e e e e e e e e e et 487
Table A-25. XOP Opcode Map 8h, Low Nibble =[Oh:7h]. 487
Table A-26. XOP Opcode Map 8h, Low Nibble=[8h:Fh] 488
Table A-27. XOP Opcode Map 9h, Low Nibble =[0h:7h]........... 488
Table A-28. XOP Opcode Map 9h, Low Nibble=[8h:Fh] 489
Table A-29. XOP Opcode Map Ah, Low Nibble=[0h:7h] 489
Table A-30. XOP Opcode Map Ah, Low Nibble=[8h:Fh].......... 489
Table A-31. XOP Opcode GIOUPS vvvt ettt et e e e ettt e et ettt 489
Table A-32. ModRM reg Field Encoding, 16-Bit Addressing, 491
Table A-33. ModRM Byte Encoding, 16-Bit Addressing. i, 491
Table A-34. ModRM reg Field Encoding, 32-Bit and 64-Bit Addressing 493
Table A-35. ModRM Byte Encoding, 32-Bit and 64-Bit Addressing. 494
Table A-36. Addressing Modes: SIB base Field Encoding, 496
Table A-37. Addressing Modes: SIBByte Encoding. 497
Table B-1. Operations and Operands in 64-BitMode 500
Table B-2. Invalid Instructions in 64-Bit Mode 525
Table B-3. Reassigned Instructions in 64-BitMode. i, 526
Xiv Tables

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
Table B-4. Invalid Instructions in Long Mode i i 526
Table B-5. Instructions Defaulting to 64-Bit Operand Size 527
Table C-1. Differences Between Long Mode and Legacy Mode 529
Table D-1. Feature Flags for Instruction / Instruction Subset Support. 534
Table D-2. Instruction Groups and CPUID Feature Flags i, 537
Table E-1. CPUID Fn0000 0000 E[D,C.B]X valuescouiiuiuiinininnannnan. 603
Table E-2. CPUID Fn8000 0000 E[D,C.B]X valuesoouiuiiniinininnannan.. 613
Table E-3. L1 Cache and TLB Associativity Field Encodings. 617
Table E-4. L2/L3 Cache and TLB Associativity Field Encoding. 619
Table E-5. LogicalProcessorCount, CmpLegacy, HTT,and NC 633
Table F-1. Instruction Effects on RFLAGS i 637

Tables

XV

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

XVi Tables

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology

Revision History

Date

Revision

Description

December 2017

3.25

Updated Appendix E.

November 2017

3.24

Modified Mem16int in Section 2.5.1 Mnemonic Syntax
Corrected Opcode for ADCX and ADOX.

Clarified the explanation for Load Far Pointer

Modified the Description for CLAC and STAC

Added clarification to MWAITX.

Added clarifying footnote to Table A-6.

Added CPUID flags for new SVM features.

Added Bit descriptions for CPUID Fn8000 0008 EBX Reserved
Modified SAL1 and SAL count in Appendix F, Table F-1.

March 2017

3.23

Added CRO.PE, CR0O.PE=1, EFER.LME=0 to Conventions and
Definitions in the Preface.

Modified Note 4 in Table 1-10.
Chapter 3:

Added ADCX, ADOX, CLFLUSHOPT, CLZERO, RDSEED, UDO
and UD1.

Modified CALL (Far).

Moved UD2 and MONITORX, MWAITX, from Chapter 4.
Chapter 4:

Modified RDTSC and RDTSCP.

Added CLAC and STAC.

Appendix A:

Modified Table A-7, Group 11.

Appendix D:

Modified Table D-1 and Added new Feature Flags.

June 2015

3.22

Added MONITORX and MWAITX to Chapter 4.

October 2013

3.21

Added BMI2 instructions to Chapter 3.

Added BZHI to Table F-1 on page 637.

Changed CPUID Fn8000_0001_ECX[25] to reserved.

Changed CPUID Fn8000_0007 _EAX and _EDX[11] to reserved.
Added CPUID Fn0000_0006_EDX[ARAT] (bit 2).

Revision History

XVii

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Date

Revision

Description

May 2013

3.20

Updated Appendix D "Instruction Subsets and CPUID Feature
Flags" on page 531 to make instruction list comprehensive.

Added a new Appendix E "Obtaining Processor Information Via
the CPUID Instruction" on page 601 which describes all defined
processor feature bits. Supersedes and replaces the CPUID
Specification (PID # 25481).

Previous Appendix E "Instruction Effects on RFLAGS"
renumbered as Appendix F.

September
2012

3.19

Corrected the value specified for the most significant nibble of
the encoding for the VPSHAX instructions in Table A-28 on
page 489.

March 2012

3.18

Added MOVBE instruction reference page to Chapter 3
"General-Purpose Instruction Reference" on page 71.
Added instruction reference pages for the
RDFSBASE/RDGSBASE and WRFSBASE/WRGSBASE
instructions to Chapter 3.

Added opcodes for the instructions to the opcode maps in
Appendix A.

December 2011

3.17

Corrected second byte of VEX C5 escape sequence in

Figure 1-2 on page 5.

Made multiple corrections to the description of register-indirect
addressing in Section 1.4 on page 17.

Corrected mod field value in third row of Figure 1-16 on page 25.
Updated pseudocode definition (see Section 2.5.3 on page 57).
Corrected exception tables for LZCNT and TZCNT instructions.
Added discussion of UD opcodes to introduction of Appendix A.
Provided ommitted definition of “B” used in the specification of
operand types in opcode maps of Appendix A.

Provided numerous corrections to instruction entries in opcode
maps of Appendix A.

Added ymm register mnemonic to Table A-32 on page 491 and
Table A-34 on page 493.

Changed notational convention for indicating addressing modes

in Table A-33 on page 491, Table A-35 on page 494, Table A-36
on page 496, and Table A-37 on page 497; edited footnotes.

XViii

Revision History

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology

Date

Revision

Description

September 2011

3.16

Reworked “Instruction Byte Order” section of Chapter 1. See
“Instruction Encoding Overview” on page 1.

Added clarification: Execution of VMRUN is disallowed while in
System Management Mode.

Made wording for BMI and TBM feature flag indication
consistent with other instructions.

Moved BMI and TBM instructions to this volume from Volume 4.
Added instruction reference page for CRC32 Instruction.

Removed one cause of #GP fault from exception table for LAR
and LSL instructions.

Added three-byte, VEX, and XOP opcode maps to Appendix A.
Revised description of RDPMC instruction.

Corrected errors in description of CLFLUSH instruction.
Corrected footnote of Table A-35 on page 494.

November 2009

3.15

Clarified MFENCE serializing behavior.
Added multibyte variant to “NOP” on page 237.

Corrected descriptive text to “CMPXCHG8B CMPXCHG16B” on
page 151.

September 2007

3.14

Added minor clarifications and corrected typographical and
formatting errors.

July 2007

3.13

Added the following instructions: LZCNT, POPCNT, MONITOR,
and MWAIT.

Reformatted information on instruction support indicated by
CPUID feature bits into a table.

Added minor clarifications and corrected typographical and
formatting errors.

September 2006

3.12

Added minor clarifications and corrected typographical and
formatting errors.

December 2005

3.1

Added SVM instructions; added PAUSE instructions; made
factual changes.

January 2005

3.10

Clarified CPUID information in exception tables on instruction
pages. Added information under “CPUID” on page 153. Made
numerous small corrections.

September 2003

3.09

Corrected table of valid descriptor types for LAR and LSL
instructions and made several minor formatting, stylistic and
factual corrections. Clarified several technical definitions.

Revision History

XiX

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Date

Revision

Description

April 2003

3.08

Corrected description of the operation of flags for RCL, RCR,
ROL, and ROR instructions. Clarified description of the
MOVSXD and IMUL instructions. Corrected operand
specification for the STOS instruction. Corrected opcode of
SETcc, Jcc, instructions. Added thermal control and thermal
monitoring bits to CPUID instruction. Corrected exception tables
for POPF, SFENCE, SUB, XLAT, IRET, LSL, MOV(CRn),
SGDT/SIDT, SMSW, and STl instructions. Corrected many small
typos and incorporated branding terminology.

XX

Revision History

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer’s Manual. This
table lists each volume and its order number.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume (Volume 3) is intended for all programmers writing application or system software for a
processor that implements the AMD64 architecture. Descriptions of general-purpose instructions
assume an understanding of the application-level programming topics described in Volume 1.
Descriptions of system instructions assume an understanding of the system-level programming topics
described in Volume 2.

Organization

Volumes 3, 4, and 5 describe the AMD64 architecture’s instruction set in detail. Together, they cover
each instruction’s mnemonic syntax, opcodes, functions, affected flags, and possible exceptions.

The AMDG64 instruction set is divided into five subsets:

e General-purpose instructions

e System instructions

e Streaming SIMD Extensions—SSE (includes 128-bit and 256-bit media instructions)

* 64-bit media instructions (MMX™)

» x87 floating-point instructions
Several instructions belong to—and are described identically in—multiple instruction subsets.

This volume describes the general-purpose and system instructions. The index at the end cross-
references topics within this volume. For other topics relating to the AMDG64 architecture, and for

Preface XXi

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

Conventions and Definitions

The following section Notational Conventions describes notational conventions used in this volume
and in the remaining volumes of this AMD®64 Architecture Programmer’s Manual. This is followed
by a Definitions section which lists a number of terms used in the manual along with their technical
definitions. Finally, the Registers section lists the registers which are a part of the application
programming model.

Notational Conventions

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.
1011b
A binary value—in this example, a 4-bit value.
FOEA _0B02h
A hexadecimal value. Underscore characters may be inserted to improve readability.
128

Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

CPUID FnXXXX_XXXX_RRR[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX_XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “ RRR” notation is followed by
“ xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CRO-CR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

CRO[PE], CRO.PE
Notation for referring to a field within a register—in this case, the PE field of the CRO register.

XXIi Preface

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

CRO[PE]=1,CRO.PE=1
Notation indicating that the PE bit of the CRO register has a value of 1.

DS:rSI

The contents of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

EFER[LME] =0, EFER.LME =0
Notation indicating that the LME bit of the EFER register has a value of 0.

RFLAGS[13:12]

A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

Many of the following definitions assume an in-depth knowledge of the legacy x86 architecture. See
“Related Documents” on page xxxiii for descriptions of the legacy x86 architecture.

128-bit media instructions

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instructions

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX™ and 3DNow!™ instruction sets, with some additional instructions from the SSE1 and
SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

Preface XXiii

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

absolute

Said of a displacement that references the base of a code segment rather than an instruction pointer.
Contrast with relative.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear

To write a bit value of 0. Compare Set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory location whose address is included in the instruction’s syntax as an
immediate operand. The address may be an absolute or relative address. Compare indirect.

dirty data

Data held in the processor’s caches or internal buffers that is more recent than the copy held in
main memory.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as Offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

XXV Preface

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size
The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing an instruction. The processor’s
response to an exception depends on the type of the exception. For all exceptions except 128-bit
media SIMD floating-point exceptions and x87 floating-point exceptions, control is transferred to
the handler (or service routine) for that exception, as defined by the exception’s vector. For
floating-point exceptions defined by the IEEE 754 standard, there are both masked and unmasked
responses. When unmasked, the exception handler is called, and when masked, a default response
is provided instead of calling the handler.

flush

An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”

GDT
Global descriptor table.

IDT

Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

Preface XXV

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on page xxxiii for descriptions of the
legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMDG64 architecture. A processor implementation of the
AMDG64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs.

memory
Unless otherwise specified, main memory.

ModRM

A byte following an instruction opcode that specifies address calculation based on mode (Mod),
register (R), and memory (M) variables.

XXVi Preface

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

moffset
A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions
A combination of 128-bit media instructions and 64-bit media instructions.

octword
Same as double quadword.

offset
Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE

Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe
A check for an address in a processor’s caches or internal buffers. External probes originate

outside the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

Preface XXVii

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

real-address mode
See real mode.

real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (also called offset) from an instruction pointer rather than the
base of a code segment. Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX

An instruction prefix that specifies a 64-bit operand size and provides access to additional
registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

SBZ
Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior.

set
To write a bit value of 1. Compare clear.

SIB

A byte following an instruction opcode that specifies address calculation based on scale (S), index
(I), and base (B).

SIMD
Single instruction, multiple data. See vector.

SSE

Streaming SIMD extensions instruction set. See 128-bit media instructions and 64-bit media
instructions.

XXViii Preface

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

SSE2

Extensions to the SSE instruction set. See 128-bit media instructions and 64-bit media
instructions.

SSE3
Further extensions to the SSE instruction set. See 128-bit media instructions.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TOP
The x87 top-of-stack pointer.

TPR
Task-priority register (CR8).

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most of the 128-bit and 64-bit media instructions use vectors as operands. Vectors are also called
packed or SMD (single-instruction multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to access exception handlers. Compare
exception.

virtual-8086 mode
A submode of legacy mode.

word
Two bytes, or 16 bits.

x86
See legacy x86.

Registers

In the following list of registers, the names are used to refer either to a given register or to the contents
of that register:

Preface XXiX

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
AH-DH
The high 8-bit AH, BH, CH, and DH registers. Compare AL-DL.
AL-DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.
AL-r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and R§B—R15B registers, available in 64-bit
mode.
BP

Base pointer register.

CRn
Control register number n.

CS
Code segment register.

eAX—-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. Compare r AX— SP.

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. Compare rlP.

EIP

32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

XXX Preface

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

GPRs
General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

IP

16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8-rl5
The 8-bit REB—R15B registers, or the 16-bit RESW—-R15W registers, or the 32-bit RED—-R15D
registers, or the 64-bit R§—R 15 registers.

rAX-rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder r with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-
bit size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

Preface XXXI

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS

RFLAGS
64-bit flags register. Compare rFLAGS

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. Compare RIP.

RIP

64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR
Task priority register, a new register introduced in the AMD64 architecture to speed interrupt
management.

TR
Task register.

Endian Order

The x86 and AMD64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with their least-significant byte at the lowest byte address, and they are illustrated
with their least significant byte at the right side. Strings are illustrated in reverse order, because the
addresses of their bytes increase from right to left.

XXXii Preface

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology

Related Documents

Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

AMD, Software Optimization Guide for AMD Family 15h Processors, order number 47414.

AMD, BIOS and Kernel Developer's Guide (BKDG) for particular hardware implementations of
older families of the AMDG64 architecture.

AMD, Processor Programming Reference (PPR) for particular hardware implementations of
newer families of the AMD64 architecture.

Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

Geoff Chappell, DOSInternals, Addison-Wesley, New York, 1994.

Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor MM X Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS A Programmer's Guide to Protected-Mode DOS Addison Wesley,
NY, 1991.

William B. Giles, Assembly Language Programming for the Intel 80xxx Family, Macmillan, New
York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

Preface XXXiii

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

» John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

e Thom Hogan, The Programmer’s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

e Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

e IBM Corporation, 4869_C Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

» IBM Corporation, 4869.C2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

e IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

e IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

* IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

e Institute of Electrical and Electronics Engineers, |IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

e Institute of Electrical and Electronics Engineers, |EEE Sandard for Radix-1ndependent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

e Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

e Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

» Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

e Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

* NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
* NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

* Bipin Patwardhan, Introduction to the Sreaming SMD Extensions in the Pentium IlI,
www.x86.org/articles/sse ptl/simdl.htm, June, 2000.

e Peter Norton, Peter Aitken, and Richard Wilton, PC Programmer’s Bible, Microsoft Press,
Redmond, WA, 1993.

e PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
e PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

e Sen-Cuo Ro and Sheau-Chuen Her, 1386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

e Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

XXXiV Preface

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

* Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

e SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

e Walter A. Triebel, The 80386D X Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
e John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
e Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

Preface XXXV

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

XXXVi Preface

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

1 Instruction Encoding

AMD64 technology instructions are encoded as byte strings of variable length. The order and meaning
of each byte of an instruction’s encoding is specifed by the architecture. Fields within the encoding
specify the instruction’s basic operation, the location of the one or more source operands, and the
destination of the result of the operation. Data to be used in the execution of the instruction or the
computation of addresses for memory-based operands may also be included. This section describes the
general format and parameters used by all instructions.

For information on the specific encoding(s) for each instruction, see:
e Chapter 3, “General-Purpose Instruction Reference.”

e Chapter 4, “System Instruction Reference.”

e “SSE Instruction Reference” in Volume 4.

e “64-Bit Media Instruction Reference” in Volume 5.

* “x87 Floating-Point Instruction Reference” in Volume 5.

For information on determining the instruction form and operands specified by a given binary
encoding, see Appendix A.

1.1 Instruction Encoding Overview

An instruction is encoded as a string between one and 15 bytes in length. The entire sequence of bytes
that represents an instruction, including the basic operation, the location of source and destination
operands, any operation modifiers, and any immediate and/or displacement values, is called the
instruction encoding. The following sections discuss instruction encoding syntax and representation in
memory.

1.1.1 Encoding Syntax

Figure 1-1 provides a schematic representation of the encoding syntax of an instruction.

Instruction Encoding 1

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

< 4 additional
Start | liegacyl|| | REX Primary End
prefix 'y prefix > opcode re
map
OFh 3DNow! 3DNow!
™ escape 4
OFh Second. l’ l 1,24,8
—| escape »| opcode |- ModRM SIB [Y» byte
map Disp
VEX or XOP note 4
\4 38h OF_38h
iq escape »| opcode [P
map
3Ah OF_3Ah
b escape » opcode [P
map
C5 2-byte sequence NOTES:
VEX R.VWWV VEX . REX prefix is not allowed in extended
| prefix —| Lpp » opcode > instruction encodings that employ the
map=01h LMap1 VEX or XOP prefixes
C4 3-byte sequence map=02h . map = VEX/XOP.map_select field
VEX RXB W.vvwy VEX . The total number of bytes in an
— prefix | map_sel[| .L.pp [~ "|°Pcode ¥ instruction encoding must be less than
| map 2 or equal to 15
map=03h . Instructions that encode an 8-byte
VEX immediate field do not use a displace-
opcode ment field and vice versa.
map 3
XOP
_—>| opcode [
map=08h map 8
map=09h
XOP W.vvwy| éz XOP
— refix —> mRa?)(Bsél L.pp —» opcode [,
p - map 9
map|=OAh
XOP
opcode
map A v3_instr_encode_syntax.eps
Figure 1-1. Instruction Encoding Syntax

Each square in this diagram represents an instruction byte of a particular type and function. To
understand the diagram, follow the connecting paths in the direction indicated by the arrows from
“Start” to “End.” The squares passed through as the graph is traversed indicate the order and number of

Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

bytes used to encode the instruction. Note that the path shown above the legacy prefix byte loops back
indicating that up to four additional prefix bytes may be used in the encoding of a single instruction.
Branches indicate points in the syntax where alternate semantics are employed based on the instruction
being encoded. The “VEX or XOP” gate across the path leading down to the VEX prefix and XOP
prefix blocks means that only extended instructions employing the VEX or XOP prefixes use this
particular branch of the syntax diagram. This diagram will be further explained in the sections that
follow.

1.1.1.1 Legacy Prefixes

As shown in the figure, an instruction optionally begins with up to five legacy prefixes. These prefixes
are described in “Summary of Legacy Prefixes” on page 6. The legacy prefixes modify an instruction’s
default address size, operand size, or segment, or they invoke a special function such as modification
of the opcode, atomic bus-locking, or repetition.

In the encoding of most SSE instructions, a legacy operand-size or repeat prefix is repurposed to
modify the opcode. For the extended encodings utilizing the XOP or VEX prefixes, these prefixes are
not allowed.

1.1.1.2 REX Prefix

Following the optional legacy prefix or prefixes, the REX prefix can be used in 64-bit mode to access
the AMDG64 register number and size extensions. Refer to the diagram in “Application-Programming
Register Set” in Volume 1 for an illustration of these facilities. If a REX prefix is used, it must
immediately precede the opcode byte or the first byte of a legacy escape sequence. The REX prefix is
not allowed in extended instruction encodings using the VEX or XOP encoding escape prefixes.
Violating this restriction results in an #UD exception.

1.1.1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. Every instruction
requires an opcode. The correspondence between the binary value of an opcode and the operation it
represents is presented in a table called an opcode map. Because it is indexed by an 8-bit value, an
opcode map has 256 entries. Since there are more than 256 instructions defined by the architecture,
multiple different opcode maps must be defined and the selection of these alternate opcode maps must
be encoded in the instruction. Escape sequences provide this access to alternate opcode maps.

If there are no opcode escapes, the primary (“one-byte”’) opcode map is used. In the figure this is the
path pointing from the REX Prefix block to the Primary opcode map block.

Section , “Primary Opcode Map” of Appendix A provides details concerning this opcode map.

1.1.1.4 Escape Sequences

Escape sequences allow access to alternate opcode maps that are distinct from the primary opcode
map. Escape sequences may be one, two, or three bytes in length and begin with a unique byte value
designated for this purpose in the primary opcode map. Escape sequences are of two distinct types:

Instruction Encoding 3

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

legacy escape sequences and extended escape sequences. The legacy escape sequences will be covered
here. For more details on the extended escape sequences, see “VEX and XOP Prefixes” on page 16.

Legacy Escape Sequences

The legacy syntax allows one 1-byte escape sequence (OFh), and three 2-byte escape sequences (0Fh,
OFh; OFh, 38h; and OFh, 3Ah). The 1-byte legacy escape sequence OFh selects the secondary (“two-
byte””) opcode map. In legacy terminology, the sequence [0Fh, opcode] is called a two-byte opcode.
See Section , “Secondary Opcode Map” of Appendix A for details concerning this opcode map.

The 2-byte escape sequence OF, OFh selects the 3DNow! opcode map which is indexed using an
immediate byte rather than an opcode byte. In this case, the byte following the escape sequence is the
ModRM byte instead of the opcode byte. In Figure 1-1 this is indicated by the path labeled “3DNow!”
leaving the second OFh escape block. Details concerning the 3DNow! opcode map are presented in
Section A.1.2, “3DNow!™ Opcodes” of Appendix A.

The 2-byte escape sequences [0Fh, 38h] and [OFh, 3Ah] respectively select the OF 38h opcode map
and the OF 3Ah opcode map. These are used primarily to encode SSE instructions and are described in
Section , “OF 38h and OF 3Ah Opcode Maps” of Appendix A.

1.1.1.5 ModRM and SIB Bytes

The opcode can be followed by a mode-register-memory (ModRM) byte, which further describes the
operation and/or operands. The ModRM byte may also be followed by a scale-index-base (SIB) byte,
which is used to specify indexed register-indirect forms of memory addressing. The ModRM and SIB
bytes are described in “ModRM and SIB Bytes” on page 17. Their legacy functions can be augmented
by the REX prefix (see “REX Prefix” on page 14) or the VEX and XOP escape sequences (See “VEX
and XOP Prefixes” on page 16).

1.1.1.6 Displacement and Immediate Fields

The instruction encoding may end with a 1-, 2-, or 4-byte displacement field and/or a 1-, 2-, or 4-byte
immediate field depending on the instruction and/or the addressing mode. Specific instructions also
allow either an 8-byte immediate field or an 8-byte displacement field.

1.1.2 Representation in Memory

Instructions are stored in memory in little-endian order. The first byte of an instruction is stored at the
lowest memory address, as shown in Figure 1-2 below. Since instructions are strings of bytes, they
may start at any memory address. The total instruction length must be less than or equal to 15. If this
limit is exceeded, a general-protection exception results.

4 Instruction Encoding

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
Legacy encoding including Extended encoding
optional REX Prefix using VEX/XOP?
gg?:ssst Immediate) Immediate A
Immediate Immediate
> »*1,2,4,0r8
— Immediate | — Immediate |
Immediate Immediate
- = - = seenote4
Displacement Displacement
Displacement Displacement
—_— ’ t I ’ 1’1,2,4, or8
Displacement Displacement
Displacement Displacement
SIBt SIBt t+optional, based addressing mode
<15 Bytes R . .
ModRM* ModRM* optional, based on instruction
Opcode Opcode
Escape* W.vvvv.L.pp R.vvvv.L.pp for VEX C5
Escape* RXB.map_select | not present for VEX C5
REX? VEX/XOP
Legacy Prefix Legacy Prefix3
Nﬁx’ Legacy Prefix3
<5 - <4
Legacy Prefix t Legacy Prefix? 1 optional, with most instructions
i A'a%vr"::; Legacy Prefix Legacy Prefix3
7 0 7 0

Notes:

" Available only in 64-Bit Mode

2 Available only in Long or Protected Mode

3F0, F2, F3, and 66 prefixes not allowed

* Instructions that specify an 8-byte immediate field do

not include a displacement field and vice versa. v3_instruct_mem.eps

Figure 1-2. An Instruction as Stored in Memory

1.2 Instruction Prefixes

Instruction prefixes are of two types: instruction modifier prefixes and encoding escape prefixes.
Instruction modifier prefixes can change the operation of the instruction (including causing its
execution to repeat), change its operand types, specify an alternate operand size, augment register
specification, or even change the interpretation of the opcode byte.

The instruction modifier prefixes comprise the legacy prefixes and the REX prefix. The legacy
prefixes are discussed in the next section. The REX prefix is discussed in “REX Prefix” on page 14.

Encoding escape prefixes, on the other hand, signal that the two or three bytes that follow obey a
different encoding syntax. As a group, the encoding escape prefix and its subsequent bytes constitute a
multi-byte escape sequence. These multi-byte escape sequences perform functions similar to that of

Instruction Encoding 5

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

the instruction modifier prefixes, but they also provide a means to directly specify alternate opcode
maps.

The currently defined encoding escape prefixes are the VEX and XOP prefixes. They are discussed
further in the section entitled “VEX and XOP Prefixes” on page 16.

1.2.1 Summary of Legacy Prefixes

Table 1-1 on page 7 shows the legacy prefixes. The legacy prefixes are organized into five groups, as
shown in the left-most column of Table 1-1. An instruction encoding may include a maximum of one
prefix from each of the five groups. The legacy prefixes can appear in any order within the position
shown in Figure 1-1 for legacy prefixes. The result of using multiple prefixes from a single group is
undefined.

Some of the restrictions on legacy prefixes are:

* Operand-Sze Override—This prefix only affects the operand size for general-purpose instructions
or for other instructions whose source or destination is a general-pupose register. When used in the
encoding of SIMD and some other instructions, this prefix is repurposed to modify the opcode.

* Address-Sze Override—This prefix only affects the address size of memory operands.

* Segment Override—In 64-bit mode, the CS, DS, ES, and SS segment override prefixes are
ignored.

* LOCK Prefix—This prefix is allowed only with certain instructions that modify memory.

* Repeat Prefixes—These prefixes affect only certain string instructions. When used in the encoding
of SIMD and some other instructions, these prefixes are repurposed to modify the opcode.

6 Instruction Encoding

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

Table 1-1. Legacy Instruction Prefixes
. Prefix oy
. 1
Prefix Group Mnemonic Byte (Hex) Description
Operand-Size none 662 Changes the default operand size of a memory or
Override register operand, as shown in Table 1-2 on page 8.
Address-Size Override | none 673 Changes the default address size of a memory operand,
as shown in Table 1-3 on page 9.
csS ops Forces use of the current CS segment for memory
operands.
DS 34 Forces use of the current DS segment for memory
operands.
ES 064 Forces use of the current ES segment for memory
. operands.
Segment Override
Forces use of the current FS segment for memory
FS 64
operands.
Forces use of the current GS segment for memory
GS 65
operands.
ss 364 Forces use of the current SS segment for memory
operands.
Lock LOCK F05 _Causeg certain kinds of memory read-modify-write
instructions to occur atomically.
REP Repeats a string operation (INS, MOVS, OUTS, LODS,
and STOS) until the rCX register equals 0.
REPE or F36 Repeats a compare-string or scan-string operation
Repeat REPZ (CMPSx and SCASXx) until the rCX register equals 0 or
P the zero flag (ZF) is cleared to 0.
REPNE or Repeats a compare-string or scan-string operation
F2b (CMPSx and SCASXx) until the rCX register equals 0 or
REPNZ)
the zero flag (ZF) is set to 1.
Notes:

1. A single instruction should include a maximum of one prefix from each of the five groups.

2. When used in the encoding of SIMD instructions, this prefix is repurposed to modify the opcode. The prefix is
ignored by 64-bit media floating-point (3DNow!™) instructions. See “Instructions that Cannot Use the Operand-Size

Prefix” on page 8.

ok w

This prefix also changes the size of the RCX register when used as an implied count register.
In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.
The LOCK prefix should not be used for instructions other than those listed in “Lock Prefix” on page 11.

This prefix should be used only with compare-string and scan-string instructions. When used in the encoding of
SIMD instructions, the prefix is repurposed to modify the opcode.

1.2.2 Operand-Size Override Prefix

The default operand size for an instruction is determined by a combination of its opcode, the D
(default) bit in the current code-segment descriptor, and the current operating mode, as shown in
Table 1-2. The operand-size override prefix (66h) selects the non-default operand size. The prefix can

Instruction Encoding

AMDA1
AMDG64 Technology

24594—Rev. 3.25—December 2017

be used with any general-purpose instruction that accesses non-fixed-size operands in memory or
general-purpose registers (GPRs), and it can also be used with the x87 FLDENV, FNSTENY,
FNSAVE, and FRSTOR instructions.

In 64-bit mode, the prefix allows mixing of 16-bit, 32-bit, and 64-bit data on an instruction-by-
instruction basis. In compatibility and legacy modes, the prefix allows mixing of 16-bit and 32-bit
operands on an instruction-by-instruction basis.

Table 1-2. Operand-Size Overrides

Default (E)ﬂ(:‘r:;ir\:g Instruction Prefix’
Operating Mode Operand pSize s6h 3
i i REX.W
Size (Bits) (Bits)
64 don’t care yes
64-Bit 2
Mode 32 32 no no
16 yes no
Long
Mode 32 32 no
Compatibility 16 yes
Mode 32 yes
16
16 no Not Appli-
32 no cable
32
Legacy Mode_ 16 yes
(Protected, Virtual-8086,
or Real Mode) 16 32 yes
16 no
Notes:
1. A*“no’indicates that the default operand size is used.
2. This is the typical default, although some instructions default to other operand
sizes. See Appendix B, “General-Purpose Instructions in 64-Bit Mode,” for details.
3. See “REX Prefix” on page 14.

In 64-bit mode, most instructions default to a 32-bit operand size. For these instructions, a REX prefix
(page 14) can specify a 64-bit operand size, and a 66h prefix specifies a 16-bit operand size. The REX
prefix takes precedence over the 66h prefix. However, if an instruction defaults to a 64-bit operand
size, it does not need a REX prefix and it can only be overridden to a 16-bit operand size. It cannot be
overridden to a 32-bit operand size, because there is no 32-bit operand-size override prefix in 64-bit
mode. Two groups of instructions have a default 64-bit operand size in 64-bit mode:

e Near branches. For details, see “Near Branches in 64-Bit Mode” in Volume 1.

* All instructions, except far branches, that implicitly reference the RSP. For details, see “Stack
Operation” in Volume 1.

Instructions that Cannot Use the Operand-Size Prefix. The operand-size prefix should be used
only with general-purpose instructions and the x87 FLDENYV, FNSTENV, FNSAVE, and FRSTOR

8 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

instructions, in which the prefix selects between 16-bit and 32-bit operand size. The prefix is ignored
by all other x87 instructions and by 64-bit media floating-point (3DNow!™) instructions.

For other instructions (mostly SIMD instructions) the 66h, F2h, and F3h prefixes are used as
instruction modifiers to extend the instruction encoding space in the OFh, OF 38h, and OF 3Ah opcode
maps.

Operand-Size and REX Prefixes. The W bit field of the REX prefix takes precedence over the 66h
prefix. See “REX.W: Operand width (Bit 3)” on page 23 for details.

1.2.3 Address-Size Override Prefix

The default address size for instructions that access non-stack memory is determined by the current
operating mode, as shown in Table 1-3. The address-size override prefix (67h) selects the non-default
address size. Depending on the operating mode, this prefix allows mixing of 16-bit and 32-bit, or of
32-bit and 64-bit addresses, on an instruction-by-instruction basis. The prefix changes the address size
for memory operands. It also changes the size of the RCX register for instructions that use RCX
implicitly.

For instructions that implicitly access the stack segment (SS), the address size for stack accesses is
determined by the D (default) bit in the stack-segment descriptor. In 64-bit mode, the D bit is ignored,
and all stack references have a 64-bit address size. However, if an instruction accesses both stack and
non-stack memory, the address size of the non-stack access is determined as shown in Table 1-3.

Table 1-3. Address-Size Overrides

Add -
Default | Effective | girc proig
Operating Mode Address | Address Size (67h)"
Size (Bits Bits
() () Required?
64-Bit 64 no
64
Mode 32 yes
32 no
Long Mode 32
Compatibility 16 yes
Mode 32 yes
16
16 no
32 32 no
Legacy Mode. 16 yes
(Protected, Virtual-8086, or Real
Mode) 16 32 yes
16 no
Notes:
1. A*“no”indicates that the default address size is used.

As Table 1-3 shows, the default address size is 64 bits in 64-bit mode. The size can be overridden to 32
bits, but 16-bit addresses are not supported in 64-bit mode. In compatibility and legacy modes, the

Instruction Encoding 9

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

default address size is 16 bits or 32 bits, depending on the operating mode (see “Processor
Initialization and Long Mode Activation” in Volume 2 for details). In these modes, the address-size
prefix selects the non-default size, but the 64-bit address size is not available.

Certain instructions reference pointer registers or count registers implicitly, rather than explicitly. In
such instructions, the address-size prefix affects the size of such addressing and count registers, just as
it does when such registers are explicitly referenced. Table 1-4 lists all such instructions and the
registers referenced using the three possible address sizes.

Table 1-4. Pointer and Count Registers and the Address-Size Prefix

Pointer or Count Register
Instruction 16-Bit 32-Bit 64-Bit
Address Size | Address Size | Address Size

CMPS, CMPSB, CMPSW,
CMPSD, CMPSQ—Compare S, DI, CX ESI, EDI, ECX | RSI, RDI, RCX
Strings
INS, INS.B’ INSW, INSD— DI, CX EDI, ECX RDI, RCX
Input String
JCXZ, JECXZ, JRCXZ—
Jump on CX/ECX/RCX Zero CX ECX RCX
LODS, LODSB, LODSW,
LODSD, LODSQ—Load SI, CX ESI, ECX RSI, RCX
String
LOOP, LOOPE, LOOPNZ,
LOOPNE, LOOPZ—Loop CX ECX RCX
MOVS, MOVSB, MOVSW,
MOVSD, MOVSQ—Move SI, DI, CX ESI, EDI, ECX | RSI, RDI, RCX
String
OUTS, OUTSB, OUTSW,
OUTSD—Output String SI, CX ESI, ECX RSI, RCX
REP, REPE, REPNE, REPNZ,
REPZ—Repeat Prefixes CX ECX RCX
SCAS, SCASB, SCASW,
SCASD, SCASQ—Scan DI, CX EDI, ECX RDI, RCX
String
STOS, STOSB, STOSW,
STOSD, STOSQ—Store DI, CX EDI, ECX RDI, RCX
String
XLAT, X!_ATB—TabIe Look-up BX EBX RBX
Translation

1.2.4 Segment-Override Prefixes

Segment overrides can be used only with instructions that reference non-stack memory. Most
instructions that reference memory are encoded with a ModRM byte (page 17). The default segment

10 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

for such memory-referencing instructions is implied by the base register indicated in its ModRM byte,
as follows:

e Instructions that Reference a Non-Sack Segment—If an instruction encoding references any base
register other than rBP or rSP, or if an instruction contains an immediate offset, the default segment
is the data segment (DS). These instructions can use the segment-override prefix to select one of
the non-default segments, as shown in Table 1-5.

e Sring Instructions—String instructions reference two memory operands. By default, they
reference both the DS and ES segments (DS:rSI and ES:rDI). These instructions can override their
DS-segment reference, as shown in Table 1-5, but they cannot override their ES-segment
reference.

e Instructions that Reference the Sack Segment—If an instruction’s encoding references the rBP or
rSP base register, the default segment is the stack segment (SS). All instructions that reference the
stack (push, pop, call, interrupt, return from interrupt) use SS by default. These instructions cannot
use the segment-override prefix.

Table 1-5. Segment-Override Prefixes

Mnemonic Pre(?l);s)yte Description
cs’ 2E Forces use of current CS segment for memory operands.
DS’ 3E Forces use of current DS segment for memory operands.
ES’ 26 Forces use of current ES segment for memory operands.
FS 64 Forces use of current FS segment for memory operands.
GS 65 Forces use of current GS segment for memory operands.
ss! 36 Forces use of current SS segment for memory operands.
Notes:
1. In 64-bit mode, the CS, DS, ES, and SS segment overrides are ignored.

Segment Overrides in 64-Bit Mode. In 64-bit mode, the CS, DS, ES, and SS segment-override
prefixes have no effect. These four prefixes are not treated as segment-override prefixes for the
purposes of multiple-prefix rules. Instead, they are treated as null prefixes.

The FS and GS segment-override prefixes are treated as true segment-override prefixes in 64-bit
mode. Use of the FS or GS prefix causes their respective segment bases to be added to the effective
address calculation. See “FS and GS Registers in 64-Bit Mode” in Volume 2 for details.

1.2.5 Lock Prefix

The LOCK prefix causes certain kinds of memory read-modify-write instructions to occur atomically.
The mechanism for doing so is implementation-dependent (for example, the mechanism may involve
bus signaling or packet messaging between the processor and a memory controller). The prefix is
intended to give the processor exclusive use of shared memory in a multiprocessor system.

Instruction Encoding 11

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

The LOCK prefix can only be used with forms of the following instructions that write a memory
operand: ADC, ADD, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHG8B, CMPXCHG16B, DEC,
INC, NEG, NOT, OR, SBB, SUB, XADD, XCHG, and XOR. An invalid-opcode exception occurs if
the LOCK prefix is used with any other instruction.

1.2.6 Repeat Prefixes

The repeat prefixes cause repetition of certain instructions that load, store, move, input, or output
strings. The prefixes should only be used with such string instructions. Two pairs of repeat prefixes,
REPE/REPZ and REPNE/REPNZ, perform the same repeat functions for certain compare-string and
scan-string instructions. The repeat function uses rCX as a count register. The size of rCX is based on
address size, as shown in Table 1-4 on page 10.

REP. The REP prefix repeats its associated string instruction the number of times specified in the
counter register (rCX). It terminates the repetition when the value in rCX reaches 0. The prefix can be
used with the INS, LODS, MOVS, OUTS, and STOS instructions. Table 1-6 shows the valid REP
prefix opcodes.

Table 1-6. REP Prefix Opcodes

Mnemonic Opcode

REP INS reg/mem8, DX
REP INSB

REP INS reg/mem16/32, DX
REP INSW F3 6D
REP INSD

REP LODS mem8
REP LODSB

REP LODS mem16/32/64
REP LODSW

REP LODSD

REP LODSQ

REP MOVS mem8, mem8
REP MOVSB

REP MOVS mem16/32/64, mem16/32/64
REP MOVSW

REP MOVSD

REP MOVSQ

REP OUTS DX, reg/mem8
REP OUTSB

F36C

F3 AC

F3 AD

F3 A4

F3 A5

F3 6E

12 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

Table 1-6. REP Prefix Opcodes (continued)

Mnemonic Opcode
REP OUTS DX, reg/mem16/32
REP OUTSW F3 6F
REP OUTSD

REP STOS mem8

REP STOSB

REP STOS mem16/32/64
REP STOSW

REP STOSD

REP STOSQ

F3 AA

F3 AB

REPE and REPZ. REPE and REPZ are synonyms and have identical opcodes. These prefixes repeat
their associated string instruction the number of times specified in the counter register (rCX). The
repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is cleared to 0. The
REPE and REPZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS, SCASB,
SCASD, and SCASW instructions. Table 1-7 shows the valid REPE and REPZ prefix opcodes.

Table 1-7. REPE and REPZ Prefix Opcodes

Mnemonic Opcode

REPx CMPS mem8, mem8
REPx CMPSB

REPx CMPS mem16/32/64, mem16/32/64
REPx CMPSW

REPx CMPSD

REPx CMPSQ

REPx SCAS mem38

REPx SCASB

REPx SCAS mem16/32/64
REPx SCASW

REPx SCASD

REPx SCASQ

F3 A6

F3 A7

F3 AE

F3 AF

REPNE and REPNZ. REPNE and REPNZ are synonyms and have identical opcodes. These prefixes
repeat their associated string instruction the number of times specified in the counter register (rCX).
The repetition terminates when the value in rCX reaches 0 or when the zero flag (ZF) is set to 1. The
REPNE and REPNZ prefixes can be used with the CMPS, CMPSB, CMPSD, CMPSW, SCAS,
SCASB, SCASD, and SCASW instructions. Table 1-8 on page 14 shows the valid REPNE and
REPNZ prefix opcodes.

Instruction Encoding 13

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

Table 1-8. REPNE and REPNZ Prefix Opcodes

Mnemonic Opcode

REPNx CMPS mem8, mem8
REPNx CMPSB

REPNx CMPS mem16/32/64, mem16/32/64
REPNx CMPSW

REPNx CMPSD

REPNx CMPSQ

REPNx SCAS mem8

REPNx SCASB

REPNx SCAS mem16/32/64

REPNx SCASW

REPNx SCASD

REPNx SCASQ

F2 A6

F2 A7

F2 AE

F2 AF

Instructions that Cannot Use Repeat Prefixes. In general, the repeat prefixes should only be used
in the string instructions listed in tables 1-6, 1-7, and 1-8 above. For other instructions (mostly SIMD
instructions) the 66h, F2h, and F3h prefixes are used as instruction modifiers to extend the instruction
encoding space in the OFh, OF 38h, and OF 3Ah opcode maps.

Optimization of Repeats. Depending on the hardware implementation, the repeat prefixes can have
a setup overhead. If the repeated count is variable, the overhead can sometimes be avoided by
substituting a simple loop to move or store the data. Repeated string instructions can be expanded into
equivalent sequences of inline loads and stores or a sequence of stores can be used to emulate a REP
STOS.

For repeated string moves, performance can be maximized by moving the largest possible operand
size. For example, use REP MOVSD rather than REP MOVSW and REP MOVSW rather than REP
MOVSB. Use REP STOSD rather than REP STOSW and REP STOSW rather than REP MOVSB.

Depending on the hardware implementation, string moves with the direction flag (DF) cleared to 0
(up) may be faster than string moves with DF set to 1 (down). DF =1 is only needed for certain cases
of overlapping REP MOVS, such as when the source and the destination overlap.

1.2.7 REX Prefix

The REX prefix, available in 64-bit mode, enables use of the AMD64 register and operand size
extensions. Unlike the legacy instruction modification prefixes, REX is not a single unique value, but
occupies a range (40h to 4Fh). Figure 1-1 on page 2 shows how the REX prefix fits within the
encoding syntax of instructions.

The REX prefix enables the following features in 64-bit mode:

e Use of the extended GPR (Figure 2-3 on page 39) and YMM/XMM registers (Figure 2-8 on
page 44).

14 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

* Use of the 64-bit operand size when accessing GPRs.

e Use of the extended control and debug registers, as described in Section 2.4 “Registers” in
Volume 2.

* Use of the uniform byte registers (AL-R15).

REX contains five fields. The upper nibble is unique to the REX prefix and identifies it is as such. The
lower nibble is divided into four 1-bit fields (W, R, X, and B). See below for a discussion of these
fields.Figure 1-3 below shows the format of the REX prefix. Since each bit of the lower nibble can be
a 1 or a 0, REX spans one full row of the primary opcode map occupying entries 40h through 4Fh.

7 6 5 4 3 2 1 0
I 4 IW/RIX|B|
v3_REX_byte_format.eps

Figure 1-3. REX Prefix Format

A REX prefix is normally required with an instruction that accesses a 64-bit GPR or one of the
extended GPR or YMM/XMM registers. A few instructions have an operand size that defaults to (or is
fixed at) 64 bits in 64-bit mode, and thus do not need a REX prefix. These instructions are listed in
Table 1-9 below.

Table 1-9. Instructions Not Requiring REX Prefix in 64-Bit Mode

CALL (Near) POP reg/mem

ENTER POP reg

Jcc POP FS

JrCXz POP GS

JMP (Near) POPF, POPFD, POPFQ
LEAVE PUSH imm8

LGDT PUSH imm32

LIDT PUSH reg/mem

LLDT PUSH reg

LOOP PUSH FS

LOOPcc PUSH GS

LTR PUSHF, PUSHFD, PUSHFQ
MOV CRn RET (Near)

MOV DRn

An instruction may have only one REX prefix which must immediately precede the opcode or first
escape byte in the instruction encoding. The use of a REX prefix in an instruction that does not access
an extended register is ignored. The instruction-size limit of 15 bytes applies to instructions that
contain a REX prefix.

Instruction Encoding 15

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

Implications for INC and DEC Instructions

The REX prefix values are taken from the 16 single-byte INC and DEC instructions, one for each of
the eight legacy GPRs. Therefore, these single-byte opcodes for INC and DEC are not available in 64-
bit mode, although they are available in legacy and compatibility modes. The functionality of these
INC and DEC instructions is still available in 64-bit mode, however, using the ModRM forms of those
instructions (opcodes FF /0 and FF /1).

1.2.8 VEX and XOP Prefixes

The extended instruction encoding syntax, available in protected and long modes, provides one 2-byte
and three 3-byte escape sequences introduced by either the VEX or XOP prefixes. These multi-byte
sequences not only select opcode maps, they also provide instruction modifiers similar to, but in lieu
of, the REX prefix.

The 2-byte escape sequence initiated by the VEX C5h prefix implies a map_select encoding of 1. The
three-byte escape sequences, initiated by the VEX C4h prefix or the XOP (8Fh) prefix, select the target
opcode map explicitly via the VEX/XOP.map_select field. The five-bit VEX.map_select field allows
the selection of one of 31 different opcode maps (opcode map 00h is reserved). The XOP.map_select
field is restricted to the range 08h — 1Fh and thus can only select one of 24 different opcode maps.

The VEX and XOP escape sequences contain fields that extend register addressing to a total of 16,
increase the operand specification capability to four operands, and modify the instruction operation.

The extended SSE instruction subsets AVX, AES, CLMU, FMA, FMA4, and XOP and a few non-SSE
instructions utilize the extended encoding syntax. See “Encoding Using the VEX and XOP Prefixes”
on page 29 for details on the encoding of the two- and three-byte extended escape sequences.

1.3 Opcode

The opcode is a single byte that specifies the basic operation of an instruction. In some cases, it also
specifies the operands for the instruction. Every instruction requires an opcode. The correspondence
between the binary value of the opcode and the operation it represents is defined by a table called an
opcode map. As discussed in the previous sections, the legacy prefixes 66h, F2h, and F3h and other
fields within the instruction encoding may be used to modify the operation encoded by the opcode.

The affect of the presence of a 66h, F2h, or F3h prefix on the operation performed by the opcode is
represented in the opcode map by additional rows in the table indexed by the applicable prefix. The 3-
bit reg and r/m fields of the ModRM byte (“ModRM and SIB Bytes” on page 17) are used as well in
the encoding of certain instructions. This is represented in the opcode maps via instruction group
tables that detail the modifications represented via the extra encoding bits. See Section A.1, “Opcode
Maps” of Appendix A for examples.

Even though each instruction has a unique opcode map and opcode, assemblers often support multiple
alternate mnemonics for the same instruction to improve the readability of assembly language code.

16 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

The 64-bit floating-point 3DNow! instructions utilize the two-byte escape sequence OFh, OFh to select
the 3DNow! opcode map. For these instructions the opcode is encoded in the immediate field at the
end of the instruction encoding.

For details on how the opcode byte encodes the basic operation for specifc instructions, see Section
A.1, “Opcode Maps” of Appendix A

1.4 ModRM and SIB Bytes

The ModRM byte is optional depending on the instruction. When present, it follows the opcode and is
used to specify:

* two register-based operands, or

* one register-based operand and a second memory-based operand and an addressing mode.

In the encoding of some instructions, fields within the ModRM byte are repurposed to provide
additional opcode bits used to define the instruction’s function.

The ModRM byte is partitioned into three fields—mod, reg, and r/m. Normally the reg field specifies a
register-based operand and the mod and r/m fields used together specify a second operand that is either

register-based or memory-based. The addressing mode is also specified when the operand is memory-
based.

In 64-bit mode, the REX.R and REX.B bits augment the reg and r/m fields respectively allowing the
specification of twice the number of registers.

141 ModRM Byte Format
Figure 1-4 below shows the format of a ModRM byte.

7 6 5 4 3 2 1 0
[mod | reg | r/m | ModRM

REX.R, VEX.R or XOP.R —T
extend this field to 4 bits

REX.B, VEX.B, or XOP.B
extend this field to 4 bits v3_ModRM _format.eps

Figure 1-4. ModRM-Byte Format

Depending on the addressing mode, the SIB byte may appear after the ModRM byte. SIB is used in the
specification of various forms of indexed register-indirect addressing. See the following section for
details.

Instruction Encoding 17

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

ModRM.mod (Bits[7:6]). The mod field is used with the r/m field to specify the addressing mode for
an operand. ModRM.mod = 11b specifies the register-direct addressing mode. In the register-direct
mode, the operand is held in the specified register. ModRM.mod values less than 11b specify register-
indirect addressing modes. In register-indirect addressing modes, values held in registers along with an
optional displacement specified in the instruction encoding are used to calculate the address of a
memory-based operand. Other encodings of the 5 bits {mod, r/m} are discussed below.

ModRM.reg (Bits[5:3]). The reg field is used to specify a register-based operand, although for some
instructions, this field is used to extend the operation encoding. The encodings for this field are shown
in Table 1-10 below.

ModRM.r/m (Bits[2:0]). As stated above, the r/m field is used in combination with the mod field to
encode 32 different operand specifications (See Table 1-14 on page 21). The encodings for this field
are shown in Table 1-10 below.

Table 1-10. ModRM.reg and .r/m Field Encodings

E"C(%?rf:r‘;?'”e ModRM.reg’ ModRM.r/m (mod = 11b)" (m:):iwﬂg'z

000 rAX, MMX0, XMMO, YMMO rAX, MMX0, XMMO, YMMO [rAX]
001 rCX, MMX1, XMM1, YMM1 rCX, MMX1, XMM1, YMMA1 [rCX]
010 rDX, MMX2, XMM2, YMM2 DX, MMX2, XMM2, YMM2 [rDX]
011 rBX, MMX3, XMM3, YMM3 rBX, MMX3, XMM3, YMM3 [rBX]
100 AH, rSP, MMX4, XMM4, YMM4 | AH, rSP, MMX4, XMM4, YMM4 SIB3
101 CH, rBP, MMX5, XMM5, YMM5 | CH, rBP, MMX5, XMM5, YMM5 [rBP]4
110 DH, rSI, MMX6, XMM6, YMM6 | DH, rSI, MMX6, XMM6, YMM6 [rS]]

111 BH, rDI, MMX7, XMM7, YMM7 |BH, rDI, MMX7, XMM7, YMM7 [rDI]

Notes:
1. Specific register used is instruction-dependent.
2. mod = 01 and mod = 10 include an offset specified by the instruction displacement field.
The notation [*] signifies that the specified register holds the address of the operand.
3. Indexed register-indirect addressing. SIB byte follows ModRM byte. See following section for SIB encoding.
4. For mod = 00b , r/m = 101b signifies absolute (displacement-only) addressing in 32-bit mode or RIP-relative

addressing in 64-bit mode, where the rBP register is not used. For mod = [01b, 10b], r/m = 101b specifies
the base + offset addressing mode with [rBP] as the base.

Similar to the reg field, r/m is used in some instructions to extend the operation encoding.

1.4.2 SIB Byte Format

The SIB byte has three fields—scale, index, and base—that define the scale factor, index-register
number, and base-register number for the 32-bit and 64-bit indexed register-indirect addressing
modes.

18 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

The basic formula for computing the effective address of a memory-based operand using the indexed
register-indirect address modes is:

effective address = scale * index + base + offset
Specific variants of this addressing mode set one or more elements of the sum to zero.
Figure 1-5 below shows the format of the SIB byte.

Bits: 7 6 5 4 3 2 1 0
[scale [index [base] SIB

REX.X bit of REX prefix can —T
extend this field to 4 bits

513-306.ps

REX.B bit of REX prefix can
extend this field to 4 bits

Figure 1-5. SIB Byte Format

SIB.scale (Bits[7:6]). The scale field is used to specify the scale factor used in computing the
scale*index portion of the effective address. In normal usage scale represents the size of data elements
in an array expressed in number of bytes. SIB.scale is encoded as shown in Table 1-11 below.

Table 1-11. SiB.scale Field Encodings

Encoded value scale
(binary) factor

00 1

01 2

10 4

11 8

SIB.index (Bits[5:3]). The index field is used to specify the register containing the index portion of
the indexed register-indirect effective address. SIB.index is encoded as shown in Table 1-12 below.

SIB.base (Bits[2:0]). The base field is used to specify the register containing the base address
portion of the indexed register-indirect effective address. SIB.base is encoded as shown in Table 1-12
below.

Instruction Encoding 19

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Table 1-12. SIB.index and .base Field Encodings

En val .
co<_ied alue SIB.index SIB.base
(binary)
000 [rAX] [rAX]
001 [rCX] [FCX]
010 [rDX] [rDX]
011 [rBX] [rBX]
100 (none)’ [rSP]
101 [rBP] [rBP], (none)?
110 [rS1] DH, [rSI]
111 [rDlI] BH, [rDI]
Notes:
1. Register specification is null. The scale*index portion of the indexed register-indirect effec-
tive address is set to 0.
2. If ModRM.mod = 00Db, the register specification is null. The base portion of the indexed reg-
ister-indirect effective address is set to 0. Otherwise, base encodes the rBP register as
the source of the base address used in the effective address calculation.

Table 1-13. SIB.base encodings for ModRM.r/m = 100b

SIB base Field
mod 000 001 010 011 100 101 110 111
00 disp32
01 [FAX] | [rCX] | [rDX] | [rBX] | [rSP] | [rBP]+disp8 | [rSl] [rDI]
10 [rBP]+disp32
11 (not applicable)

More discussion of operand addressing follows in the next two sections.

1.4.3 Operand Addressing in Legacy 32-bit and Compatibility Modes

The mod and r/m fields of the ModRM byte provide a total of five bits used to encode 32 operand
specification and memory addressing modes. Table 1-14 below shows these encodings.

20 Instruction Encoding

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

Table 1-14. Operand Addressing Using ModRM and SIB Bytes

ModRM.mod | ModRM.r/m Register / Effective Address
000 [rAX]
001 [rCX]
010 [rDX]
011 [rBX]
00
100 sIB!
101 disp32
110 [rSI]
111 [rDI]
000 [rAX]+disp8
001 [rCX]+disp8
010 [rDX]+disp8
011 [rBX]+disp8
01
100 SIB+disp82
101 [rBP]+disp8
110 [rSI]+disp8
11 [rDI]+disp8
000 [rAX]+disp32
001 [rCX]+disp32
010 [rDX]+disp32
011 [rBX]+disp32
10
100 SIB+disp32°
101 [rBP]+disp32
110 [rSI]+disp32
111 [rDI]+disp32
Notes:

0. In the following notes, scaled_index = SIB.index * (1 << SIB.scale).

1. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base. When SIB.base = 101b, addressing mode depends on
ModRM.mod. See Table 1-13 above.

2. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base+8-bit_offset. One-byte Displacement field provides the
offset.

3. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base+32-bit_offset. Four-byte Displacement field provides the
offset.

Instruction Encoding

21

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

Table 1-14. Operand Addressing Using ModRM and SIB Bytes (continued)

ModRM.mod | ModRM.r/m Register / Effective Address
000 AL/rAXIMMX0/XMMO/YMMO
001 CL/rCX/MMX1/XMM1/YMM1
010 DL/rDX/MMX2/XMM2/YMM2

" 011 BL/rBX/IMMX3/XMM3/YMM3

100 AH/SPL/rSP/MMX4/XMM4/Y MM4
101 CH/BPL/rBP/MMX5/XMM5/YMM5
110 DH/SIL/rSI/MMX6/XMM6/Y MM6
111 BH/DIL/rDI/MMX7/XMM7/YMM7

Notes:

0. In the following notes, scaled_index = SIB.index * (1 << SIB.scale).

1. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base. When SIB.base = 101b, addressing mode depends on
ModRM.mod. See Table 1-13 above.

2. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base+8-bit_offset. One-byte Displacement field provides the
offset.

3. SIB byte follows ModRM byte. Effective address is calculated using
scaled_index+base+32-bit_offset. Four-byte Displacement field provides the
offset.

Note that the addressing mode mod = 11b is a register-direct mode, that is, the operand is contained in
the specified register, while the modes mod = [00b:10b] specify different addressing modes for a
memory-based operand.

For mod = 11b, the register containing the operand is specified by the r/m field. For the other modes
(mod = [00b:10b]), the mod and r/m fields are combined to specify the addressing mode for the
memory-based operand. Most are register-indirect addressing modes meaning that the address of the
memory-based operand is contained in the register specified by r/m. For these register-indirect modes,
mod = 01b and mod = 10b include an offset encoded in the displacement field of the instruction.

The encodings {mod # 11b, r/m = 100b} specify the indexed register-indirect addressing mode in
which the target address is computed using a combination of values stored in registers and a scale
factor encoded directly in the SIB byte. For these addressing modes the effective address is given by
the formula:

effective _address = scale * index + base + offset

Scale is encoded in SIB.scale field. Index is contained in the register specified by SIB.index field and
base is contained in the register specified by SIB.base field. Offset is encoded in the displacement field
of the instruction using either one or four bytes.

If {mod, r/m} = 00100Db, the offset portion of the formula is set to 0. For {mod, r/m} = 01100b and
{mod, r/m} =10100b, offset is encoded in the one- or 4-byte displacement field of the instruction.

22 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

Finally, the encoding {mod, r/m} = 00101b specifies an absolute addressing mode. In this mode, the
address is provided directly in the instruction encoding using a 4-byte displacement field. In 64-bit
mode this addressing mode is changed to RIP-relative (see “RIP-Relative Addressing” on page 24).

1.4.4 Operand Addressing in 64-bit Mode

AMDG64 architecture doubles the number of GPRs and increases their width to 64-bits. It also doubles
the number of YMM/XMM registers. In order to support the specification of register operands
contained in the eight additional GPRs or YMM/XMM registers and to make the additional GPRs
available to hold addresses to be used in the addressing modes, the REX prefix provides the R, X, and
B bit fields to extend the reg, r/m, index, and base fields of the ModRM and SIB bytes in the various
operand addressing modes to four bits. A fourth REX bit field (W) allows instruction encodings to
specify a 64-bit operand size.

Table 1-15 below and the sections that follow describe each of these bit fields.

Table 1-15. REX Prefix-Byte Fields

Mnemonic Bit Position(s) Definition
— 7:4 0100 (4h)
0 = Default operand size
REX-W 3 1 = 64-bit operand size
REX R 5 1I-b|t1(msb) ('axltensmn of the ModR.M reg
field', permitting access to 16 registers.
REX.X 1 1-bit (msb) extension of the SIB index field",

permitting access to 16 registers.
1-bit (msb) extension of the ModRM r/m

REX.B 0 field!, SIB base field', or opcode reg field,
permitting access to 16 registers.

Notes:

1. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on
page 17.

REX.W: Operand width (Bit 3). Setting the REX.W bit to 1 specifies a 64-bit operand size. Like the
existing 66h operand-size override prefix, the REX 64-bit operand-size override has no effect on byte
operations. For non-byte operations, the REX operand-size override takes precedence over the 66h
prefix. If a 66h prefix is used together with a REX prefix that has the W bit set to 1, the 66h prefix is
ignored. However, if a 66h prefix is used together with a REX prefix that has the W bit cleared to 0,
the 66h prefix is not ignored and the operand size becomes 16 bits.

REX.R: Register field extension (Bit 2). The REX.R bit adds a 1-bit extension (in the most
significant bit position) to the ModRM.reg field when that field encodes a GPR, YMM/XMM, control,
or debug register. REX.R does not modify ModRM.reg when that field specifies other registers or is
used to extend the opcode. REX.R is ignored in such cases.

Instruction Encoding 23

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

REX.X: Index field extension (Bit 1). The REX.X bit adds a 1-bit (msb) extension to the SIB.index
field. See “ModRM and SIB Bytes” on page 17.

REX.B: Base field extension (Bit 0). The REX.B bit adds a 1-bit (msb) extension to either the
ModRM.r/m field to specify a GPR or XMM register, or to the SIB.base field to specify a GPR. (See
Table 2-2 on page 56 for more about the B bit.)

1.5 Displacement Bytes

A displacement (also called an offset) is a signed value that is added to the base of a code segment
(absolute addressing) or to an instruction pointer (relative addressing), depending on the addressing
mode. The size of a displacement is 1, 2, or 4 bytes. If an addressing mode requires a displacement, the
bytes (1, 2, or 4) for the displacement follow the opcode, ModRM, or SIB byte (whichever comes last)
in the instruction encoding.

In 64-bit mode, the same ModRM and SIB encodings are used to specify displacement sizes as those
used in legacy and compatibility modes. However, the displacement is sign-extended to 64 bits during
effective-address calculations. Also, in 64-bit mode, support is provided for some 64-bit displacement
and immediate forms of the MOV instruction. See “Immediate Operand Size” in Volume 1 for more
information on this.

1.6 Immediate Bytes

An immediate is a value—typically an operand value—encoded directly into the instruction.
Depending on the opcode and the operating mode, the size of an immediate operand can be 1, 2, 4, or 8
bytes. 64-bit immediates are allowed in 64-bit mode on MOV instructions that load GPRs, otherwise
they are limited to 4 bytes. See “Immediate Operand Size” in Volume 1 for more information.

If an instruction takes an immediate operand, the bytes (1, 2, 4, or 8) for the immediate follow the
opcode, ModRM, SIB, or displacement bytes (whichever come last) in the instruction encoding. Some
128-bit media instructions use the immediate byte as a condition code.

1.7 RIP-Relative Addressing

In 64-bit mode, addressing relative to the contents of the 64-bit instruction pointer (program
counter)—called RIP-relative addressing or PC-relative addressing—is implemented for certain
instructions. In such cases, the effective address is formed by adding the displacement to the 64-bit
RIP of the next instruction.

In the legacy x86 architecture, addressing relative to the instruction pointer is available only in control-
transfer instructions. In the 64-bit mode, any instruction that uses ModRM addressing can use RIP-
relative addressing. This feature is particularly useful for addressing data in position-independent code
and for code that addresses global data.

24 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

Without RIP-relative addressing, ModRM instructions address memory relative to zero. With RIP-
relative addressing, ModRM instructions can address memory relative to the 64-bit RIP using a signed
32-bit displacement. This provides an offset range of £2 Gbytes from the RIP.

Programs usually have many references to data, especially global data, that are not register-based. To
load such a program, the loader typically selects a location for the program in memory and then adjusts
program references to global data based on the load location. RIP-relative addressing of data makes
this adjustment unnecessary.

1.71 Encoding

Table 1-16 shows the ModRM and SIB encodings for RIP-relative addressing. Redundant forms of
32-bit displacement-only addressing exist in the current ModRM and SIB encodings. There is one
ModRM encoding with several SIB encodings. RIP-relative addressing is encoded using one of the
redundant forms. In 64-bit mode, the ModRM disp32 (32-bit displacement) encoding ({mod,r/m} =
00101Db) is redefined to be RIP + disp32 rather than displacement-only.

Table 1-16. Encoding for RIP-Relative Addressing

ModRM siB Legacy and 64-bit Mode Additional 64-bit
Compatibility Modes Implications
Zero-based (normal)
* mod =00 . . displacement addressing
+
. tJm =101 not present disp32 RIP + disp32 must use SIB form (see
next row).
L] = 2
.« mod = 00 base = 101 .
1 | index = 100° disp32 Same as Legacy None
* r/m=100
+ scale = xx
Notes:
1. Encodes the indexed register-indirect addressing mode with 32-bit offset.
2. Base register specification is null (base portion of effective address calculation is set to 0)
3. index register specification is null (scale*index portion of effective address calculation is set to 0)

1.7.2 REX Prefix and RIP-Relative Addressing

ModRM encoding for RIP-relative addressing does not depend on a REX prefix. In particular, the r/m
encoding of 101, used to select RIP-relative addressing, is not affected by the REX prefix. For
example, selecting R13 (REX.B = 1, r/m = 101) with mod = 00 still results in RIP-relative addressing.

The four-bit r/m field of ModRM is not fully decoded. Therefore, in order to address R13 with no
displacement, software must encode it as R13 + 0 using a one-byte displacement of zero.

1.7.3 Address-Size Prefix and RIP-Relative Addressing

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. Conversely, use of the
address-size prefix (“Address-Size Override Prefix” on page 9) does not disable RIP-relative

Instruction Encoding 25

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

addressing. The effect of the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits, like any other addressing mode.

1.8 Encoding Considerations Using REX

Figure 1-6 on page 28 shows four examples of how the R, X, and B bits of the REX prefix are
concatenated with fields from the ModRM byte, SIB byte, and opcode to specify register and memory
addressing.

1.8.1 Byte-Register Addressing

In the legacy architecture, the byte registers (AH, AL, BH, BL, CH, CL, DH, and DL, shown in
Figure 2-2 on page 38) are encoded in the ModRM reg or r/m field or in the opcode reg field as
registers 0 through 7. The REX prefix provides an additional byte-register addressing capability that
makes the least-significant byte of any GPR available for byte operations (Figure 2-3 on page 39).
This provides a uniform set of byte, word, doubleword, and quadword registers better suited for
register allocation by compilers.

1.8.2 Special Encodings for Registers

Readers who need to know the details of instruction encodings should be aware that certain
combinations of the ModRM and SIB fields have special meaning for register encodings. For some of
these combinations, the instruction fields expanded by the REX prefix are not decoded (treated as
don’t cares), thereby creating aliases of these encodings in the extended registers. Table 1-17 on
page 27 describes how each of these cases behaves.

26 Instruction Encoding

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

Table 1-17. Special REX Encodings for Registers

ModRM and SIB

Meaning in Legacy and

Implications in Legacy
and Compatibility

Additional REX

Encodingsz Compatibility Modes Modes Implications
REX prefix adds a fourth
ModRM Byt bit (b), which is decoded
0 yte: . . and modifies the base
* mod # 11 SIB byte is present. SIB byte s required for register in the SIB byte.

« r/m' =100 (ESP)

ESP-based addressing.

Therefore, the SIB byte is
also required for R12-
based addressing.

ModRM Byte:
* mod =00
« r/m' =x101 (EBP)

Base register is not used.

Using EBP without a
displacement must be
done by setting mod = 01
with a displacement of 0
(with or without an index
register).

REX prefix adds a fourth
bit (x), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0.

SIB Byte:
« index' = x100 (ESP)

Index register is not used.

ESP cannot be used as
an index register.

REX prefix adds a fourth
bit (x), which is decoded.
Therefore, there are no
additional implications.
The expanded index field
is used to distinguish RSP
from R12, allowing R12 to
be used as an index.

SIB Byte:
* base =b101 (EBP)
« ModRM.mod = 00

Base register is not used
if ModRM.mod = 00.

Base register depends on
mod encoding. Using
EBP with a scaled index
and without a
displacement must be
done by setting mod = 01
with a displacement of 0.

REX prefix adds a fourth
bit (b), which is not
decoded (don’t care).
Therefore, using RBP or
R13 without a
displacement must be
done via mod = 01 with a
displacement of 0 (with or
without an index register).

Notes:

1. The REX-prefix bit is shown in the fourth (most-significant) bit position of the encodings for the ModRM r/m, SIB
index, and SIB base fields. The lower-case “x” for ModRM r/m (rather than the upper-case “B” shown in Figure 1-6

on page 28) indicates that the REX-prefix bit is not decoded (don't care).

2. For a description of the ModRM and SIB bytes, see “ModRM and SIB Bytes” on page 17.

Instruction Encoding

27

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

Examples of Operand Addressing Extension Using REX

Case 1: Register-Register Addressing (No Memory Operand)

ModRM Byte
REX Prefix Opcode mod reg r/m
4WRXB | | | [11] rr Jobb] REX.Xis not used
|
4
4
Rrrr Bbbb

Case 2: Memory Addressing Without an SIB Byte

ModRM Byte
REX Prefix Opcode mod reg r/m _
4WRXB | | | [1] rr [obb] REXXis not used
| ModRM reg field = 100
4
4
Rrrr Bbbb

Case 3: Memory Addressing With an SIB Byte
ModRM Byte SIB Byte

REX Prefix Opcode mod reg r/m scaleindex base
4WRXB | | | [111] rr [100 | [bb | xxx | bbb |
|
4 14
4
Rrrr Xxxx Bbbb

Case 4: Register Operand Coded in Opcode Byte

REX Prefix op reg
4WRXB | | [bbb|] REXRis notused
| REX.Xis not used
4
Bbbb v3_REX_reg_addr.eps

Figure 1-6. Encoding Examples Using REX R, X, and B Bits

28 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

1.9 Encoding Using the VEX and XOP Prefixes

An extended escape sequence is introduced by an encoding escape prefix which establishes the context
and the format of the bytes that follow. The currently defined prefixes fall in two classes: the XOP and
the VEX prefixes (of which there are two). The XOP prefix and the VEX C4h prefix introduce a three
byte sequence with identical syntax, while the VEX C5h prefix introduces a two-byte escape sequence
with a different syntax.

These escape sequences supply fields used to extend operand specification as well as provide for the
selection of alternate opcode maps. Encodings support up to two additional operands and the
addressing of the extended (beyond 7) registers. The specification of two of the operands is
accomplished using the legacy ModRM and optional SIB bytes with the reg, r/m, index, and base
fields extended by one bit in a manner analogous to the REX prefix.

The encoding of the extended SSE instructions utilize extended escape sequences. XOP instructions
use three-byte escape sequences introduced by the XOP prefix. The AVX, FMA, FMA4, and CLMUL
instruction subsets use three-byte or two-byte escape sequences introduced by the VEX prefixes.

1.9.1 Three-Byte Escape Sequences

All the extended instructions can be encoded using a three-byte escape sequence, but certain VEX-
encoded instructions that comply with the constraints described below in Section 1.9.2, “Two-Byte
Escape Sequence” can also utilize a two-byte escape sequence. Figure 1-7 below shows the format of
the three-byte escape sequence which is common to the XOP and VEX-based encodings.

Byte 0 Byte 1 Byte 2
7 0o|l7 6 5 4 0|7 6 3 2 1 0
Encoding escape prefix R ‘ X ‘ B ‘ map_select W VVVV ‘ L | pp ‘

Figure 1-7. VEX/XOP Three-byte Escape Sequence Format

Byte Bit Mnemonic Description
0 [7:0] VEX, XOP Value specific to the extended instruction set
1 [7 R Inverted one-bit extension of ModRM reg field
[6] X Inverted one-bit extension of SIB index field
[5] B Inverted one-bit extension, r/m field or SIB base
field
[4:0] map_select Opcode map select

Instruction Encoding 29

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
Byte Bit Mnemonic Description
2 [7] w Default operand size override for a general

purpose register to 64-bit size in 64-bit mode;
operand configuration specifier for certain
YMM/XMM-based operations.

[6:3] VWV Source or destination register selector, in ones’
complement format

2] L Vector length specifier

[1:0] pp Implied 66, F2, or F3 opcode extension

Table 1-18. Three-byte Escape Sequence Field Definitions
Byte 0 (VEX/XOP Prefix)

Byte 0 is the encoding escape prefix byte which introduces the encoding escape sequence and
establishes the context for the bytes that follow. The VEX and XOP prefixes have the following
encodings:

* VEX prefix is encoded as C4h
e XOP prefix is encoded as 8Fh

Byte 1

VEX/XOP.R (Bit 7). The bit-inverted equivalent of the REX.R bit. A one-bit extension of the
ModRM.reg field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, the value must be 1.

VEX/XOP.X (Bit 6). The bit-inverted equivalent of the REX.X bit. A one-bit extension of the
SIB.index field in 64-bit mode, permitting access to 16 YMM/XMM and GPR registers. In 32-bit
protected and compatibility modes, this value must be 1.

VEX/XOP.B (Bit 5). The bit-inverted equivalent of the REX.B bit, available only in the 3-byte prefix
format. A one-bit extension of either the ModRM.r/m field, to specify a GPR or XMM register, or of
the SIB base field, to specify a GPR. This permits access to all 16 GPR and YMM/XMM registers. In
32-bit protected and compatibility modes, this bit is ignored.

VEX/XOP.map_select (Bits [4:0]). The five-bit map select field is used to select an alternate
opcode map. The map_select encoding spaces for VEX and XOP are disjoint. Table 1-19 below lists
the encodings for VEX.map_select and Table 1-20 lists the encodings for XOP.map_select.

Table 1-19. VEX.map_select Encoding

Binary Value Opcode Map Analogous Legacy Opcode Map
00000 Reserved -
00001 VEX opcode map 1 | Secondary (“two-byte”) opcode map

30 Instruction Encoding

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

Table 1-19. VEX.map_select Encoding

Binary Value Opcode Map Analogous Legacy Opcode Map
00010 VEX opcode map 2 OF _38h (“three-byte”) opcode map
00011 VEX opcode map 3 OF_3Ah (“three-byte”) opcode map

00100 — 11111 Reserved -

Table 1-20. XOP.map_select Encoding

Binary Value Opcode Map
00000 - 00111 Reserved
01000 XOP opcode map 8
01001 XOP opcode map 9
01010 XOP opcode map 10 (Ah)
01011 — 11111 Reserved

AVX instructions are encoded using the VEX opcode maps 1-3. The AVX instruction set includes
instructions that provide operations similar to most legacy SSE instructions. For those AVX
instructions that have an analogous legacy SSE instruction, the VEX opcode maps use the same binary
opcode value and modifiers as the legacy version. The correspondence between the VEX opcode maps
and the legacy opcode maps are shown in Table 1-19 above.

VEX opcode maps 1-3 are also used to encode the FMA4 and FMA instructions. In addition, not all
legacy SSE instructions have AVX equivalents. Therefore, the VEX opcode maps are not the same as
the legacy opcode maps.

The XOP opcode maps are unique to the XOP instructions. The XOP.map_select value is restricted to
the range [08h:1Fh]. If the value of the XOP.map_select field is less than 8, the first two bytes of the
three-byte XOP escape sequence are interpreted as a form of the POP instruction.

Both legacy and extended opcode maps are covered in detail in Appendix A.
Byte 2

VEX/XOP.W (Bit 7). Function is instruction-specific. The bit is often used to configure source
operand order.

VEX/XOP.vvvv (Bits [6:3]). Used to specify an additional operand for three and four operand
instructions. Encodes an XMM or YMM register in inverted ones’ complement form, as shown in
Table 1-21.

Instruction Encoding 31

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

Table 1-21. VEX/XOP.vvvv Encoding

Binary Value Register Binary Value Register
0000 XMM15/YMM15 1000 XMMO7/YMMO7
0001 XMM14/YMM14 1001 XMMO06/YMMO06
0010 XMM13/YMM13 1010 XMMO5/YMMO05
0011 XMM12/YMM12 1011 XMMO04/YMMO04
0100 XMM11/YMM11 1100 XMMO03/YMMO03
0101 XMM10/YMM10 1101 XMMO02/YMMO02
0110 XMMO09/YMMO09 1110 XMMO01/YMMO1
0111 XMMO08/YMMO08 1111 XMMO00/YMMOO

Values 0000h to 0111h are not valid in 32-bit modes. vvvv is typically used to encode the first source
operand, but for the VPSLLDQ, VPSRLDQ, VPSRLW, VPSRLD, VPSRLQ, VPSRAW, VPSRAD,
VPSLLW, VPSLLD, and VPSLLQ shift instructions, the field specifies the destination register.

VEX/XOP.L (Bit2). L = 0 specifies 128-bit vector length (XMM registers/128-bit memory
locations). L=1 specifies 256-bit vector length (YMM registers/256-bit memory locations). For SSE or
XOP instructions with scalar operands, the L bit is ignored. Some vector SSE instructions support only
the 128 bit vector size. For these instructions, L is cleared to 0.

VEX/XOP.pp (Bits [1:0]). Specifies an implied 66h, F2h, or F3h opcode extension which is used in a
way analogous to the legacy instruction encodings to extend the opcode encoding space. The
correspondence between the encoding of the VEX/XOP.pp field and its function as an opcode modifier
is shown in Table 1-22. The legacy prefixes 66h, F2h, and F3h are not allowed in the encoding of
extended instructions.

Table 1-22. VEX/XOP.pp Encoding

Binary Value | Implied Prefix
00 None
01 66h
10 F3h
11 F2h

1.9.2 Two-Byte Escape Sequence

All VEX-encoded instructions can be encoded using the three-byte escape sequence, but certain
instructions can also be encoded utilizing a more compact, two-byte VEX escape sequence. The
format of the two-byte escape sequence is shown in Figure 1-8 below.

32 Instruction Encoding

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
Byte 0 Byte 1
7 0|7 6 3 2 10
VEX R VWV ‘ L ‘ pp ‘

Figure 1-8. VEX Two-byte Escape Sequence Format

Prefix Byte Bit Mnemonic Description
0 [7:0] VEX VEX 2-byte encoding escape prefix
1 [7] R Inverted one-bit extension of ModRM.reg field
[6:3] VVVV Source or destination register selector, in ones’
complement format.
[2] L Vector length specifier
[1:0] pp Implied 66, F2, or F3 opcode extension.

Table 1-23. VEX Two-byte Escape Sequence Field Definitions

Byte 0 (VEX Prefix)
The VEX prefix for the two-byte escape sequence is encoded as C5h.
Byte 1

Note that the bit 7 of this byte is used to encode VEX.R instead of VEX.W as in the three-byte escape
sequence form. The R, vvvv, L, and pp fields are defined as in the three-byte escape sequence.

When the two-byte escape sequence is used, specific fields from the three-byte format take on fixed
values as shown in Table 1-24 below.

Table 1-24. Fixed Field Values for VEX 2-Byte Format

VEX Field Value
X 1
B 1
w 0
map_select 00001b

Although they may be encoded using the VEX three-byte escape sequence, all instructions that
conform with the constraints listed in Table 1-24 may be encoded using the two-byte escape sequence.
Note that the implied value of map select is 00001b, which means that only instructions included in
the VEX opcode map 1 may be encoded using this format.

VEX-encoded instructions that use the other defined values of map select (00010b and 00011b)
cannot be encoded using this a two-byte escape sequence format. Note that the VEX.pp field value is

Instruction Encoding 33

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

explicitly encoded in this form and can be used to specify any of the implied legacy prefixes as defined
in Table 1-22.

34 Instruction Encoding

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
2 Instruction Overview
2.1 Instruction Groups

For easier reference, the instruction descriptions are divided into five groups based on usage. The
following sections describe the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by all instructions in the AMD64 architecture:

e Chapter 3, “ General-Purpose Instruction Reference’” —The general-purpose instructions are used
in basic software execution. Most of these load, store, or operate on data in the general-purpose
registers (GPRs), in memory, or in both. Other instructions are used to alter sequential program
flow by branching to other locations within the program or to entirely different programs.

* Chapter 4, “ System Instruction Reference” —The system instructions establish the processor
operating mode, access processor resources, handle program and system errors, and manage
memory.

e “SSE Instruction Reference” in Volume 4—The Streaming SIMD Extensions (SSE) instructions
load, store, or operate on data located in the YMM/XMM registers. These instructions define both
vector and scalar operations on floating-point and integer data types. They include the SSE and
SSE2 instructions that operate on the YMM/XMM registers. Some of these instructions convert
source operands in YMM/XMM registers to destination operands in GPR, MMX, or x87 registers
or otherwise affect YMM/XMM state.

e “64-Bit Media Instruction Reference” in Volume 5—The 64-bit media instructions load, store, or
operate on data located in the 64-bit MMX registers. These instructions define both vector and
scalar operations on integer and floating-point data types. They include the legacy MMX™
instructions, the 3DNow!™ instructions, and the AMD extensions to the MMX and 3DNow!
instruction sets. Some of these instructions convert source operands in MMX registers to
destination operands in GPR, YMM/XMM, or x87 registers or otherwise affect MMX state.

e “x87 Floating-Point Instruction Reference” in Volume 5—The x87 instructions are used in legacy
floating-point applications. Most of these instructions load, store, or operate on data located in the
x87 ST(0)-ST(7) stack registers (the FPRO—FPR7 physical registers). The remaining instructions
within this category are used to manage the x87 floating-point environment.

The description of each instruction covers its behavior in all operating modes, including legacy mode
(real, virtual-8086, and protected modes) and long mode (compatibility and 64-bit modes). Details of
certain kinds of complex behavior—such as control-flow changes in CALL, INT, or FXSAVE
instructions—have cross-references in the instruction-detail pages to detailed descriptions in volumes
1 and 2.

Two instructions—CMPSD and MOV SD—use the same mnemonic for different instructions.
Assemblers can distinguish them on the basis of the number and type of operands with which they are
used.

Instruction Overview 35

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

2.2 Reference-Page Format

Figure 2-1 on page 37 shows the format of an instruction-detail page. The instruction mnemonic is
shown in bold at the top-left, along with its name. In this example, POPFD is the mnemonic and POP
to EFLAGSDoubleword is the name. Next, there is a general description of the instruction’s operation.
Many descriptions have cross-references to more detail in other parts of the manual.

Beneath the general description, the mnemonic is shown again, together with the related opcode(s) and
a description summary. Related instructions are listed below this, followed by a table showing the
flags that the instruction can affect. Finally, each instruction has a summary of the possible exceptions
that can occur when executing the instruction. The columns labeled “Real” and “Virtual-8086” apply
only to execution in legacy mode. The column labeled “Protected” applies both to legacy mode and
long mode, because long mode is a superset of legacy protected mode.

The 128-bit and 64-bit media instructions also have diagrams illustrating the operation. A few
instructions have examples or pseudocode describing the action.

36 Instruction Overview

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
Mnemonic and any operands Opcode Description of operation
AMDD
24594 Rev.3.07 September 2003 AMD64 Technology
AAM ASCII Adjust After Multiply

Converts the value in the AL register from binary to two unpacked BCD digits in the
AH (most significant) and AL (least significant) registers using the following formula:

AH (AL/10d)
AL (AL mod 10d).

In most modern assemblers, the AAM instruction adjusts to base-10 values. However,
by coding the instruction djrectly in binary, it can adjust to any base specified by the
immediate byte value (ib) spffixed onto the D4h opcode. For example, code D408h for
octal, D40Ah for decimal, and D40Ch for duodecimal (base 12).

Using this instruction in 64{bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
AAM D4 0A Create a pair of unpacked BCD values in AH and AL.
(Invalid in 64-bit mode.)
(None) D4ib Create a pair of unpacked values to the immediate byte base.
(Invalid in 64-bit mode.)
Related Instructions “M” means the flag is either set or
cleared, depending on the result.
AAA, AAD, AAS
rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT 10PL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u M| M|U|[M|U

21 |20 | 19 | 18 | 17 | 16 | 14 13-12 n 10 9 8 7 6 4 2 0

Note: Bits 31-22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined flags are U.

Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
Divide by zero, #DE X X X 8-bit immediate value was 0.
Invalid opcode, #UD X This instruction was executed in 64-bit mode.

Possible exceptions “Protected” column Alphabetic mnemonic locator
and causes, by mode of covers both legacy
operation and long mode

Figure 2-1. Format of Instruction-Detail Pages

Instruction Overview 37

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

2.3 Summary of Registers and Data Types

This section summarizes the registers available to software using the five instruction subsets described
in “Instruction Groups” on page 35. For details on the organization and use of these registers, see their
respective chapters in volumes 1 and 2.

2.3.1 General-Purpose Instructions

Registers. The size and number of general-purpose registers (GPRs) depends on the operating
mode, as do the size of the flags and instruction-pointer registers. Figure 2-2 shows the registers
available in legacy and compatibility modes.

register high low
encoding 8-bit 8bit 16-bit 32-bit
0 AH @) | AL AX EAX
3 BH(7 | BL BX EBX

1 CHe)| CL X ECX

2 DH®)| DL DX EDX

6 SI SI ESI

7 DI DI EDI

5 BP BP EBP

4 SP SP ESP
31 16 15 0

FLAGS FLAGS EFLAGS

IP IP EIP

31 0

513-311.eps

Figure 2-2. General Registers in Legacy and Compatibility Modes

Figure 2-3 on page 39 shows the registers accessible in 64-bit mode. Compared with legacy mode,
registers become 64 bits wide, eight new data registers (R8—R15) are added and the low byte of all 16
GPRs is available for byte operations, and the four high-byte registers of legacy mode (AH, BH, CH,
and DH) are not available if the REX prefix is used. The high 32 bits of doubleword operands are zero-
extended to 64 bits, but the high bits of word and byte operands are not modified by operations in 64-

38 Instruction Overview

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

bit mode. The RFLAGS register is 64 bits wide, but the high 32 bits are reserved. They can be written

with anything but they read as zeros (RAZ).

zero-extended
for 32-bit operands
<— not modified for 16-bit operands —>| low
<«<—— not modified for 8-bit operands ——>|8 bits
0 AH* | AL
3 BH*| BL
1 CH*| CL
2 DH*| DL
6 SIL**
o 7 DIL**
c
S5 5 BPL**
S
s 4 SPL**
[NN]
E 8 R8B
(%]
‘qa? 9 R9B
< 10 R10B
1 R11B
12 R12B
13 R13B
14 R14B
15 R15B
e
63 3231 16 15 87 0
0 I

63 32 31

0

16-bit

BX
CX
DX

SI

DI

BP
SP
R8W
R9wW
R10W
R1MW
R12wW
R13W
R14W
R15W

RFLAGS
RIP

* Not addressable in REX prefix instruction forms
** Only addressable in REX prefix instruction forms

32-bit
EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP
R8D
R9D
R10D
R11D
R12D
R13D
R14D
R15D

64-bit
RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP
R8
R9
R10
R11
R12
R13
R14
R15

GPRs_64b_mode.eps

Figure 2-3. General Registers in 64-Bit Mode

For most instructions running in 64-bit mode, access to the extended GPRs requires a either a REX
instruction modification prefix or extended encoding encoding using the VEX or XOP sequences

(page 14).

Instruction Overview

39

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

Figure 2-4 shows the segment registers which, like the instruction pointer, are used by all instructions.
In legacy and compatibility modes, all segments are accessible. In 64-bit mode, which uses the flat
(non-segmented) memory model, only the CS, FS, and GS segments are recognized, whereas the
contents of the DS, ES, and SS segment registers are ignored (the base for each of these segments is
assumed to be zero, and neither their segment limit nor attributes are checked). For details, see
“Segmented Virtual Memory” in Volume 2.

Legacy Mode and 64-Bit
Compatibility Mode Mode
I cs
(Attributes only)
DS ignored
ES ignored
FS
FS (Base only)
GS
GS (Base only)
SS ignored
15 0 15 0

513-312.eps

Figure 2-4. Segment Registers

Data Types. Figure 2-5 on page 41 shows the general-purpose data types. They are all scalar, integer
data types. The 64-bit (quadword) data types are only available in 64-bit mode, and for most
instructions they require a REX instruction prefix.

40 Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

127 Signed Integer

s 16 bytes (64-bit mode only) gﬂgglﬁord

5 8 bytes (64-bit mode only) Quadword

63 s 4 bytes Doubleword

3l s 2 bytes Word

15 B Byte

7 0

Unsigned Integer
127 0

16 bytes (64-bit mode only)

Double
Quadword

8 bytes (64-bit mode only) Quadword

63 4 bytes Doubleword

3 2 bytes Word

15 Byte

Packed BCD

BCD Digit
7 3{ Bit

513-326.eps

Figure 2-5. General-Purpose Data Types

2.3.2 System Instructions

Registers. The system instructions use several specialized registers shown in Figure 2-6 on page 42.
System software uses these registers to, among other things, manage the processor’s operating
environment, define system resource characteristics, and monitor software execution. With the
exception of the RFLAGS register, system registers can be read and written only from privileged
software.

All system registers are 64 bits wide, except for the descriptor-table registers and the task register,
which include 64-bit base-address fields and other fields.

Instruction Overview 41

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
Control Registers :" Extended-Feature-Enable Register Memory-Typing Registers
CRO C EFER MTRRcap
CR2 : MTRRdefType
CR3 . System-Configuration Register MTRRphysBasen
CR4 b SYSCFG MTRRphysMaskn
CR8 MTRRfixn
© System-Linkage Registers PAT
. . STAR TOP_MEM
System-Flags Register : AR TOP. MEMZ
RFLAGS :
CSTAR :
SFMASK Performance-Monitoring Registers :
Debug Registers FS.base TsC
DRO E GS.base PerfEvtSeln
DR1 KernelGSbase PerfCtrn
DR2 : SYSENTER_CS
DR3 . SYSENTER ESP Machine-Check Registers
DR6 : SYSENTER_EIP MCG_CAP
DR7 : MCG_STAT
Debug-Extension Registers MCG_CTL
Descriptor-Table Registers : DebugCt MCI_CTL
GDTR . LastBranchFromIP MC'—'STATUS
IDTR LastBranchTolP MC'_—ADDR
: LastIntFromIP MCi_MISC
LDTR :
LastIntTolP

Task Register
TR

System_Registers_Diag.eps

Figure 2-6. System Registers

Data Structures. Figure 2-7 on page 43 shows the system data structures. These are created and
maintained by system software for use in protected mode. A processor running in protected mode uses
these data structures to manage memory and protection, and to store program-state information when
an interrupt or task switch occurs.

42 Instruction Overview

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
Segment Descriptors (Contained in Descriptor Tables) Task-State Segment
| Code | Gate
| Stack | Task-State Segment
| Data | Local-Descriptor Table

Descriptor Tables

...

Global-Descriptor Table Interrupt-Descriptor Table Local-Descriptor Table '
Descriptor Gate Descriptor Descriptor .
Descriptor Gate Descriptor Descriptor .
Descriptor Gate Descriptor Descriptor .

...

Page-Map Level-4 Page-Directory Pointer Page Directory Page Table

...

513-261.eps
Figure 2-7. System Data Structures

2.3.3 SSE Instructions

Registers. The SSE instructions operate primarily on 128-bit and 256-bit floating-point vector
operands located in the 256-bit YMM/XMM registers. Each 128-bit XMM register is defined as the
lower octword of the corresponding YMM register. The number of available YMM/XMM data
registers depends on the operating mode, as shown in Figure 2-8 below. In legacy and compatibility
modes, eight YMM/XMM registers (YMM/XMMO0-7) are available. In 64-bit mode, eight additional
YMM/XMM data registers (YMM/XMMS8-15) are available. These eight additional registers are
addressed via the encoding extensions provided by the REX, VEX, and XOP prefixes.

Instruction Overview 43

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

The MXCSR register contains floating-point and other control and status flags used by the 128-bit
media instructions. Some 128-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and
the MMX registers (Figure 2-12 on page 48) or set or clear flags in the rFLAGS register (see
Figure 2-2 and Figure 2-3).

255 127 0
XMMO YMMO
XMMH1 YMMA1
XMM2 YMM2
XMM3 YMM3
XMM4 YMM4
XMM5 YMM5
XMM6 YMM6
XMM7 YMM7
XMM8 YMM8
XMM9 YMM9
XMM10 YMM10
XMM11 YMM11
XMM12 YMM12
XMM13 YMM13
XMM14 YMM14
XMM15 YMM15

Media eXtension Control and Status Register MXCSR
[| Available in all modes 31 0
[] Available only in 64-bit mode 513314 ymm.eps

Figure 2-8. SSE Registers

Data Types. The SSE instruction set architecture provides support for 128-bit and 256-bit packed
floating-point and integer data types as well as integer and floating-point scalars. Figure 2-9 below
shows the 128-bit data types. Figure 2-10 on page 46 and Figure 2-11 on page 47 show the 256-bit
data types. The floating-point data types include IEEE-754 single precision and double precision

types.

44 Instruction Overview

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology

Vector (Packed) Floating-Point — Double Precision and Single Precision
127 15 63 51

s exp significand s exp significand

s exp significand | exp significand |3 exp significand |§ exp significand

127 18 95 86 63 54 31 22

Vector (Packed) Signed Integer — Quadword, Doubleword, Word, Byte

s quadword s quadword
s doubleword s doubleword s doubleword s doubleword
| word |§ word § word |§ word |4 word § word & word § word
s byte ¢ byte 5 byte [y byte |5 byte |5 byte [5 byte [§ byte [f| byte |5 byte [byte byte f byte s byte s byte |5 byte
127 19 11 103 95 87 79 71 63 55 47 39 31 23 15 7 0
Vector (Packed) Unsigned Integer — Quadword, Doubleword, Word, Byte
quadword quadword
doubleword doubleword doubleword doubleword
word word word word word word word word
byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte

127 19 m 103 95 87 79 4l 63 55 47 39 31 23 15

Scalar Floating-Point — Double Precision and Single Precision'

7 0

|S| exp | significand
63 51 H exp | significand
31 22 o
Scalar Signed Integers
|s| double quadword (octword)
127 |s| quadword
63 H doubleword
31 word
15 byte
Scalar Unsigned Integers ’ °
double quadword (octword)
127 | quadword
63 doubleword
31
Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

128-bit datatypes.eps

Figure 2-9. 128-Bit SSE Data Types

Instruction Overview

45

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Vector (Packed) Floating-Point — Double Precision and Single Precision

255 243 191 179 128

s exp significand s exp significand

| exp significand o exp significand o exp significand S| exp significand

255 246 223 214 191 182 159 150 128

127 115 63 51 0

s exp significand s exp significand

s exp significand s exp significand s exp significand s exp significand

127 118 95 86 63 54 31 22 0
Vector (Packed) Signed Integer — Double Quadword, Quadword, Doubleword, Word, Byte

s double quadword (octword)

s quadword s quadword

s doubleword s doubleword s doubleword s doubleword

s word s word s word s word s word s word s word s word

S| byte [1 byte [1 byte [byte 1 byte | byte |3 byte [byte [y byte |1 byte [byte [y byte |1 byte [byte [1 byte |5 byte

255 247 239 231 223 215 207 199 191 183 175 167 159 151 143 135 128

s double quadword (octword)

s quadword s quadword

s doubleword s doubleword s doubleword s doubleword

s word | word | word | word | word | word | word | word

s| byte [f| byte | byte [y byte [s byte 1| byte [{{ byte [byte | byte [f| byte | byte [f| byte [f| byte |5 byte [{{ byte [byte

127 19 M1 103 95 87 79 71 63 55 47 39 31 23 15 7 0

256-bit datatypes_a.eps

Figure 2-10. SSE 256-bit Data Types

46

Instruction Overview

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

Vector (Packed) Unsigned Integer — Double Quadword, Quadword, Doubleword, Word, Byte

double quadword (octword)
quadword quadword
doubleword doubleword doubleword doubleword
word word word word word word word word
byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte
255 247 239 231 223 215 207 199 191 183 175 167 159 151 143 135 128
double quadword (octword)
quadword quadword
doubleword doubleword doubleword doubleword
word word word word word word word word
byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte | byte
127 19 1M 103 95 87 79 7 63 55 47 39 3 23 15 7 0
Scalar Floating-Point — Double Precision and Single Precision’
s| exp | significand
63 51 s| exp | significand
31 22 0
Scalar Signed Integers
s double quadword
127 |s| quadword
63 |s| doubleword
31 | word
15 byte
7 0
Scalar Unsigned Integers
double quadword
127 | quadword
63 doubleword
31

256-bit datatypes_b.eps

Note: 1) A 16 bit Half-Precision Floating-Point Scalar is also defined.

Figure 2-11.

SSE 256-Bit Data Types (Continued)

Instruction Overview

47

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

2.3.4 64-Bit Media Instructions

Registers. The 64-bit media instructions use the eight 64-bit MMX registers, as shown in
Figure 2-12. These registers are mapped onto the x87 floating-point registers, and 64-bit media
instructions write the x87 tag word in a way that prevents an x87 instruction from using MMX data.

Some 64-bit media instructions also use the GPR (Figure 2-2 and Figure 2-3) and the XMM registers
(Figure 2-8).

MMX Data Registers
63 0

mmx0

mmx1

mmx2

mmx3

mmx4

mmx5

mmx6

mmx7

513-327eps

Figure 2-12. 64-Bit Media Registers

Data Types. Figure 2-13 on page 49 shows the 64-bit media data types. They include floating-point
and integer vectors and integer scalars. The floating-point data type, used by 3DNow! instructions,
consists of a packed vector or two IEEE-754 32-bit single-precision data types. Unlike other kinds of
floating-point instructions, however, the 3DNow!™ instructions do not generate floating-point
exceptions. For this reason, there is no register for reporting or controlling the status of exceptions in
the 64-bit-media instruction subset.

48 Instruction Overview

AMDA

24594—Rev. 3.25—December 2017

Vector (Packed) Single-Precision Floating-Point

s exp significand S| exp significand

63 54 31 by) 0
Vector (Packed) Signed Integers

s doubleword g doubleword

s word | word | word | word

byte [f| byte |5 byte |5 byte |{| byte [s

byte |5 byte [{ byte

63 55 47 39 3 23 15 7 0
Vector (Packed) Unsigned Integers
doubleword doubleword
word word word word
byte | byte | byte | byte | byte | byte | byte | byte
63 55 47 39 3 23 15 7 0
Signed Integers
s quadword
63 s doubleword
3l s\ word
15 5| byte
7 0
Unsigned Integers
quadword
63 doubleword
3 word
15 byte
1
513319.eps 0
Figure 2-13. 64-Bit Media Data Types

AMDG64 Technology

Instruction Overview

49

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

2.3.5 x87 Floating-Point Instructions

Registers. The x87 floating-point instructions use the x87 registers shown in Figure 2-14. There are
eight 80-bit data registers, three 16-bit registers that hold the x87 control word, status word, and tag
word, and three registers (last instruction pointer, last opcode, last data pointer) that hold information
about the last x87 operation.

The physical data registers are named FPRO-FPR7, although x87 software references these registers
as a stack of registers, named ST(0)-ST(7). The x87 instructions store operands only in their own 80-
bit floating-point registers or in memory. They do not access the GPR or XMM registers.

x87 Data Registers
79 0

fpro

fpri

fpr2

fpr3

fpra

fprs5

fpré

fpr7

Instruction Pointer (rIP) Control Word

Data Pointer (rDP) Status Word

63 Opcode Tag Word
10 0 15 0

513-321.eps

Figure 2-14. x87 Registers

Data Types. Figure 2-15 on page 51 shows all x87 data types. They include three floating-point
formats (80-bit double-extended precision, 64-bit double precision, and 32-bit single precision), three
signed-integer formats (quadword, doubleword, and word), and an 80-bit packed binary-coded
decimal (BCD) format.

50 Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

Floating-Point

79 63 0
s exp i significand E&%E%ﬁmnded
7 | exp significand Double Precision
o °! s exp significand Single Precision
3 2 0

Signed Integer

s 8 bytes Quadword
63 s 4 bytes Doubleword
3 | 2 bytes Word
15 0

Binary-Coded Decimal (BCD)

£ Packed Decimal

79 U 0

513-317eps

Figure 2-15. x87 Data Types

24 Summary of Exceptions

Table 2-1 on page 52 lists all possible exceptions. The table shows the interrupt-vector numbers,
names, mnemonics, source, and possible causes. Exceptions that apply to specific instructions are
documented with each instruction in the instruction-detail pages that follow.

Instruction Overview 51

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Table 2-1. Interrupt-Vector Source and Cause

Vector Interrupt (Exception) Mnemonic | Source Cause
0 Divide-By-Zero-Error #DE Software | DIV, IDIV, AAM instructions
1 Debug #DB Internal |Instruction accesses and data accesses
2 Non-Maskable-Interrupt #NMI External | External NMI signal
3 Breakpoint #BP Software |INT3 instruction
4 Overflow #OF Software |INTO instruction
5 Bound-Range #BR Software |BOUND instruction
6 Invalid-Opcode #UD Internal |Invalid instructions
7 Device-Not-Available #NM Internal | x87 instructions
8 Double-Fault #DF Internal |Interrupt during an interrupt
9 Coprocessor-Segment-Overrun — External |Unsupported (reserved)
10 Invalid-TSS 4TS Internal Tagk-state segment access and task

switch

11 Segment-Not-Present #NP Internal | Segment access through a descriptor
12 Stack #SS Internal | SS register loads and stack references
13 General-Protection #GP Internal I(\:/Ihzrggy accesses and protection
14 Page-Fault #PF Internal (I;/Ineanglc;ré/ accesses when paging
15 Reserved —
to [FomnePamEERn | e | sonware (10 foatne o ot O meds
17 Alignment-Check #AC Internal | Memory accesses
18 | Machine-Check amc | M odel specific
19 SIMD Floating-Point #XF Internal | 128-bit media floating-point instructions

20—29 [Reserved (Internal and External) —
30 SVM Security Exception #SX External | Security-Sensitive Events
31 Reserved (Internal and External) —

0—255 |External Interrupts (Maskable) #INTR External |External interrupt signal

0—255 | Software Interrupts — Software |INTn instruction

2.5 Notation
2,51 Mnemonic Syntax

Each instruction has a syntax that includes the mnemonic and any operands that the instruction can
take. Figure 2-16 shows an example of a syntax in which the instruction takes two operands. In most

52

Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

instructions that take two operands, the first (left-most) operand is both a source operand (the first
source operand) and the destination operand. The second (right-most) operand serves only as a source,
not a destination.

ADDPD xmm1, xmm2/mem128

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand 513-322.eps

Figure 2-16. Syntax for Typical Two-Operand Instruction

The following notation is used to denote the size and type of source and destination operands:

e cReg—Control register.

* dReg—Debug register.

e imm8—Byte (8-bit) immediate.

e imm16—Word (16-bit) immediate.

e imm16/32—Word (16-bit) or doubleword (32-bit) immediate.

e imm32—Doubleword (32-bit) immediate.

e imm32/64—Doubleword (32-bit) or quadword (64-bit) immediate.

e imm64—Quadword (64-bit) immediate.

* mem—An operand of unspecified size in memory.

* mem8—Byte (8-bit) operand in memory.

e meml6—Word (16-bit) operand in memory.

* meml6/32—Word (16-bit) or doubleword (32-bit) operand in memory.

e mem32—Doubleword (32-bit) operand in memory.

* mem32/48—Doubleword (32-bit) or 48-bit operand in memory.

* memd48—48-bit operand in memory.

* mem64—Quadword (64-bit) operand in memory.

e meml28—Double quadword (128-bit) operand in memory.

e meml6:16—Two sequential word (16-bit) operands in memory.

e meml6:32—A doubleword (32-bit) operand followed by a word (16-bit) operand in memory.
* mem32real —Single-precision (32-bit) floating-point operand in memory.

Instruction Overview 53

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017

mem16int— Word (16-bit) integer operand in memory.

mem32int—Doubleword (32-bit) integer operand in memory.

mem64real —Double-precision (64-bit) floating-point operand in memory.
mem64int—Quadword (64-bit) integer operand in memory.

mem80real —Double-extended-precision (80-bit) floating-point operand in memory.
mem80dec— 80-bit packed BCD operand in memory, containing 18 4-bit BCD digits.
mem2env— 16-bit x87 control word or x87 status word.

mem14/28env— 14-byte or 28-byte x87 environment. The x87 environment consists of the x87
control word, x87 status word, x87 tag word, last non-control instruction pointer, last data pointer,
and opcode of the last non-control instruction completed.

mem94/108env—94-byte or 108-byte x87 environment and register stack.
mem512env—512-byte environment for 128-bit media, 64-bit media, and x87 instructions.
mmMx—Quadword (64-bit) operand in an MMX register.

mmx1—Quadword (64-bit) operand in an MMX register, specified as the left-most (first) operand
in the instruction syntax.

mMx2—Quadword (64-bit) operand in an MMX register, specified as the right-most (second)
operand in the instruction syntax.

mmx/mem32—Doubleword (32-bit) operand in an MMX register or memory.
mmx/mem64—Quadword (64-bit) operand in an MMX register or memory.

mmx1/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the left-
most (first) operand in the instruction syntax.

mmx2/mem64—Quadword (64-bit) operand in an MMX register or memory, specified as the right-
most (second) operand in the instruction syntax.

moffset— Direct memory offset that specifies an operand in memory.

moffset8— Direct memory offset that specifies a byte (8-bit) operand in memory.
moffset16— Direct memory offset that specifies a word (16-bit) operand in memory.
moffset32— Direct memory offset that specifies a doubleword (32-bit) operand in memory.
moffset64— Direct memory offset that specifies a quadword (64-bit) operand in memory.
pntr16:16—Far pointer with 16-bit selector and 16-bit offset.

pntr16:32—Far pointer with 16-bit selector and 32-bit offset.

reg—Operand of unspecified size in a GPR register.

reg8—Byte (8-bit) operand in a GPR register.

regl6—Word (16-bit) operand in a GPR register.

regl6/32—Word (16-bit) or doubleword (32-bit) operand in a GPR register.
reg32—Doubleword (32-bit) operand in a GPR register.

reg64d—Quadword (64-bit) operand in a GPR register.

54

Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

* reg/mem8—Byte (8-bit) operand in a GPR register or memory.

* reg/meml6—Word (16-bit) operand in a GPR register or memory.

* reg/mem32—Doubleword (32-bit) operand in a GPR register or memory.
* reg/mem64—Quadword (64-bit) operand in a GPR register or memory.
» rel8off—Signed 8-bit offset relative to the instruction pointer.

» rell16off—Signed 16-bit offset relative to the instruction pointer.

» rel32off—Signed 32-bit offset relative to the instruction pointer.

* segReg or sReg—Word (16-bit) operand in a segment register.

e ST(0)—=x87 stack register 0.

e ST(i)—x87 stack register i, where i is between 0 and 7.

e Xmm—Double quadword (128-bit) operand in an XMM register.

e Xmml—Double quadword (128-bit) operand in an XMM register, specified as the left-most (first)
operand in the instruction syntax.

e Xmm2—Double quadword (128-bit) operand in an XMM register, specified as the right-most
(second) operand in the instruction syntax.

e xmm/mem64—Quadword (64-bit) operand in a 128-bit XMM register or memory.
e xmm/meml28—Double quadword (128-bit) operand in an XMM register or memory.

e xmml/meml28—Double quadword (128-bit) operand in an XMM register or memory, specified as
the left-most (first) operand in the instruction syntax.

e xmm2/meml128—Double quadword (128-bit) operand in an XMM register or memory, specified as
the right-most (second) operand in the instruction syntax.

e ymm—Double octword (256-bit) operand in an YMM register.

e ymml—Double octword (256-bit) operand in an YMM register, specified as the left-most (first)
operand in the instruction syntax.

* ymm2—Double octword (256-bit) operand in an YMM register, specified as the right-most
(second) operand in the instruction syntax.

o ymnVmem64—Quadword (64-bit) operand in a 256-bit YMM register or memory.
e ymm/mem128—Double quadword (128-bit) operand in an YMM register or memory.

o ymml/mem256—Double octword (256-bit) operand in an YMM register or memory, specified as
the left-most (first) operand in the instruction syntax.

e ymm2/mem256—Double octword (256-bit) operand in an YMM register or memory, specified as
the right-most (second) operand in the instruction syntax.

2.5.2 Opcode Syntax

In addition to the notation shown above in “Mnemonic Syntax” on page 52, the following notation
indicates the size and type of operands in the syntax of an instruction opcode:

Instruction Overview 55

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017

/digit—Indicates that the ModRM byte specifies only one register or memory (r/m) operand. The
digit is specified by the ModRM reg field and is used as an instruction-opcode extension. Valid
digit values range from 0 to 7.

/r—Indicates that the ModRM byte specifies both a register operand and a reg/mem (register or
memory) operand.

cb, cw, cd, cp—Specifies a code-offset value and possibly a new code-segment register value. The
value following the opcode is either one byte (cb), two bytes (cw), four bytes (cd), or six bytes
(cp)-

ib, iw, id, iq—Specifies an immediate-operand value. The opcode determines whether the value is
signed or unsigned. The value following the opcode, ModRM, or SIB byte is either one byte (ib),
two bytes (iw), or four bytes (id). Word and doubleword values start with the low-order byte.

+rb, +rw, +rd, +rq—Specifies a register value that is added to the hexadecimal byte on the left,
forming a one-byte opcode. The result is an instruction that operates on the register specified by
the register code. Valid register-code values are shown in Table 2-2.

mB64—Specifies a quadword (64-bit) operand in memory.

+i—Specifies an x87 floating-point stack operand, ST(i). The value is used only with x87 floating-
point instructions. It is added to the hexadecimal byte on the left, forming a one-byte opcode. Valid
values range from 0 to 7.

Table 2-2. +rb, +rw, +rd, and +rq Register Value

REX.B Specified Register
Bit' Value +rb +rw +rd +rq
0 AL AX EAX RAX
1 CL CX ECX RCX
2 DL DX EDX RDX
0 3 BL BX EBX RBX
or no REX
Prefix 4 AH, SPL' SP ESP RSP
5 CH, BPL' BP EBP RBP
6 DH, SILT Sl ESI RSI
7 BH, DIL’ DI EDI RDI
0 R8B R8W R8D R8
1 R9B ROW R9D R9
2 R10B R10W R10D R10
] 3 R11B R11W R11D R11
4 R12B R12W R12D R12
5 R13B R13W R13D R13
6 R14B R14W R14D R14
7 R15B R15W R15D R15
1. See “REX Prefix” on page 14.

56

Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

2.5.3 Pseudocode Definition

Pseudocode examples are given for the actions of several complex instructions (for example, see
“CALL (Near)” on page 126). The following definitions apply to all such pseudocode examples:
FHEEEEE bbb rrirr i

/1 Pseudo Code Definition
FHELTEELT i rirrirrirrirrlng

11

/1l Comments start with double slashes.

11

[l '"=" can mean "is", or assignnent based on context
/[l '"==" is the equal s conpari son operator

11

FHELTEEITEE i rirrirrirrirrlng
// Constants
FHELTELI T rirrirrirrirrlng

0 /1l nunbers are in base-10 (decimal), unless followed by a suffix
0000_0001b /1 a number in binary notation, underbars added for readability
FFEO_0000h /1 a nunmber expressed in hexadeci mal notation

/1 in the following, '& is the |ogical AND operator. See "Logi cal Operators"
/'l bel ow.

/1 reg[fld] identifies a field (one or nore bits) within architected register
/1 or within a sub-elenent of a l|larger data structure. A dot separates the

/1 higher-level data structure name fromthe sub-el erent name.

11

CS. desc = Code Segnent descri ptor /1 CS.desc has sub-elenents: base, linmt, attr
SS. desc = Stack Segnent descriptor // SS.desc has the same sub-el enents

CS. desc. base = base subfield of CS.desc

CS = Code Segment Regi ster

SS = Stack Segnment Regi ster

CPL = Current Privilege Level (0 <= CPL <= 3)

REAL_MODE = (CRO[PE] == 0)

PROTECTED MODE = ((CRO[PE] == 1) && (RFLAGS[VM == 0))

VI RTUAL_MODE = ((CRO[PE] == 1) && (RFLAGS[VM == 1))

LEGACY_MODE = (EFER[LMA] == 0)

LONG_MODE = (EFER[LMA] == 1)

64BI T_MODE = ((EFER[LMA] ==1) && (CS desc.attr[L] == 1) && (CS_desc.attr[D] == 0))
COVPATI BI LI TY_MODE = (EFER[LMA] == 1) && (CS_ desc.attr[L] == 0)

PAG NG ENABLED = (CRO[PG == 1)

ALI GNVENT_CHECK_ENABLED = ((CRO[AM == 1) && (RFLAGS[AC] == 1) && (CPL == 3))

OPERAND_SI ZE = 16, 32, or 64 // size, in bits, of an operand

/| OPERAND_SI ZE depends on processor node, the current code segment descriptor
/| default operand size [D], presence of the operand size override prefix (66h)
/1 and, in 64-bit node, the REX prefix.

/'l NOTE: Specific instructions take 8-bit operands, but for these instructions,
/1 operand size is fixed and the variable OPERAND SI ZE i s not needed.

ADDRESS SI ZE = 16, 32, or 64 // size, in bits, of the effective address for

Instruction Overview 57

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

/1l menmory reads. ADDRESS S| ZE depends processor node, the current code segnent
/'l descriptor default operand size [D], and the presence of the address size
/'l override prefix (67h)

STACK SIZE = 16, 32, or 64 /1 size, in bits of stack operation operand
/1 STACK S| ZE depends on current code segnment descriptor attribute D bit and
/'l the Stack Segnent descriptor attribute B bit.

PEPTTTTEL i r bbb r bbb rrrn
/1l Architected Registers

PEPTTTTELE b r bbb r bbb rrn
/1 ldentified using abbrevi ated nanmes assi gned by the Architecture; can represent
/1l the register or its contents dependi ng on context.

RAX = the 64-bit contents of the general -purpose register

EAX = 32-bit contents of GPR EAX

AX = 16-bit contents of GPR AX

AL |l ower 8 bits of GPR AX

AH = upper 8 bits of GPR AX

i ndex_of (reg) = value used to encode the register.
i ndex_of (AX) = 0000b
i ndex_of (RAX) = 0000b

/1 in legacy and conpatibility nodes the nsb of the index is fixed as O

FHLELETEE i ririririrgd
/'l Defined Vari abl es
FHELELTEEE i r iy

old RIRP = RIP at the start of current instruction

old RSP = RSP at the start of current instruction

ol d_RFLAGS = RFLAGS at the start of the instruction

old CS = CS selector at the start of current instruction

[
old DS = DS selector at the start of current instruction
old ES = ES selector at the start of current instruction
old FS = FS selector at the start of current instruction
old GS = GS selector at the start of current instruction
old SS = SS selector at the start of current instruction
RIP = the current RIP register
RSP = the current RSP register
RBP = the current RBP register

RFLAGS = the current RFLAGS register
next RIP = RIP at start of next instruction

CS.desc = the current CS descriptor, including the subfields:
base limt attr

SS.desc = the current SS descriptor, including the subfields:
base limt attr

58 Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

SRC = the instruction’s source operand

SRC1 = the instruction's first source operand

SRC2 = the instruction's second source operand

SRC3 = the instruction's third source operand

IMVMB = 8-bit inmediate encoded in the instruction

| MML6 = 16-bit inmedi ate encoded in the instruction
I MVB2 = 32-bit inmediate encoded in the instruction
| MVB4 = 64-bit inmedi ate encoded in the instruction
DEST = instruction’s destination register

tenp_* // 64-bit tenporary register

tenp_* desc /1 tenporary descriptor, with sub-el enents:
/1 if it points to a block of menory: base limt attr
/1 if it's a gate descriptor: offet segnent attr

NULL = 0000h // null selector is all zeros

NNy
/| Exceptions
NNy
EXCEPTI ON [#GP(0)] // Signals an exception; error code in parenthesis

EXCEPTI ON [#UD| /1 if no error code

/'l possible exception types:

#DE // Divide-By-Zero-Error Exception (Vector 0)
#DB // Debug Exception (Vector 1)

#BP // | NT3 Breakpoi nt Exception (Vector 3)

#OF // | NTO Overfl ow Exception (Vector 4)

#BR // Bound- Range Exception (Vector 5)

#UD // I nvalid-Qpcode Exception (Vector 6)

#NM // Devi ce- Not - Avai | abl e Exception (Vector 7)
#DF // Doubl e- Fault Exception (Vector 8)

#TS // Invalid-TSS Exception (Vector 10)

#NP // Segnent - Not - Present Exception (Vector 11)
#SS /| Stack Exception (Vector 12)

#GP /| General -Protection Exception (Vector 13)
#PF // Page- Fault Exception (Vector 14)

#MF /| x87 Fl oati ng-Poi nt Exception-Pending (Vector 16)
#AC // Al ignment - Check Exception (Vector 17)
#MC // Machi ne- Check Exception (Vector 18)

#XF // SIMD Fl oati ng-Poi nt Exception (Vector 19)

NN NNy
[l ITmplicit Assignments
NN NNy

Il V,Z,A,S are integer variables, assigned a value when an instruction begins
/'l executing (they can be assigned a different value in the mddle of an

[l instruction, if needed)

| F (OPERAND_SI ZE == 16) V = 2

Instruction Overview 59

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

| F (OPERAND_SI ZE == 32)
| F (OPERAND_SI ZE == 64)
| F (OPERAND_SI ZE == 16)
| F (OPERAND_SI ZE == 32)
| F (OPERAND_SI ZE == 64)
| F (ADDRESS_SI ZE == 16)
| F (ADDRESS_SI ZE == 32)
| F (ADDRESS_SI ZE == 64)
| F (STACK_SI ZE == 16)

| F (STACK_SI ZE == 32)

| F (STACK_SI ZE == 64)

WO r>P>PNNNII
1 VI (T VO T VR T T VR
OBRNORANDADIN®AN

NN
/1 Bit Range Inside a Register
NN

tenp _data[x:y] // Bits x through y (inclusive) of tenp data
PEETITIEL bbb bbb rrn

/1 Variables and data types
PEETETTEL bbb r bbb n bbb rrn

Nxt Val ue = 5 /ldefault data type is unsigned int.

i nt /l abstract data type representing an integer

bool /l abstract data type; either TRUE or FALSE

vect or /1 An array of data elements. Individual elenments are accessed via

/lan unsi gned integer zero-based index. Elenments have a data type.
bi t /la single bit

byt e /18-bit val ue

wor d //16-bit val ue
doubl eword /132-bit val ue
quadword /164-bit val ue
octword /1128-bit val ue

doubl e octword //256-bit val ue

unsigned int aval //treat aval as an unsigned integer val ue

signed int valx /ltreat val x as a signed integer val ue
bit vector b_vect //b vect is an array of data elenents. Each elenment is a bit.
b _vect[5] /1 The sixth element (bit) in the array. Indices are 0-based

PEETETTEL bbb bbb rr bbb rrn
/1l Elenents Wthin a packed data type
NN NNy

/1 elenent i of size w occupies bits [wi-1:w]

NNy
/1 Moving Data From One Regi ster To Anot her
NNy
tenp _dest.b = tenp_src; [// 1-byte nove (copies |lower 8 bits of tenp _src to

/1 tenp_dest, preserving the upper 56 bits of tenp_dest)

60 Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

tenp_dest.w = tenp_src; [// 2-byte nove (copies lower 16 bits of tenp_src to
/1 tenp_dest, preserving the upper 48 bits of tenp_dest)
tenp_dest.d = tenp_src; // 4-byte nove (copies lower 32 bits of tenp_src to
/1 tenp_dest; zeros out the upper 32 bits of tenp_dest)
tenp_dest.q = tenp_src; [// 8-byte nove (copies all 64 bits of tenp_src to
/1 tenp_dest)
tenp_dest.v = tenp_src; [// 2-byte nove if V==2
/1l 4-byte move if V==4
/1 8-byte move if V==8
tenp_dest.z = tenp_src; [// 2-byte nove if ZzZ==2
/1l 4-byte nmove if Z==4
tenp _dest.a = tenp_src; [// 2-byte nove if A==2
/1l 4-byte nmove if A==4
/1 8-byte move if A==8
tenp _dest.s = tenp_src; [// 2-byte nove if S==2
/1l 4-byte nmove if S==4
/1 8-byte move if S==8

PEETTTTEL bbb bbb bbb bbb rrn
/1 Arithnetic Operators
PEETTTTEL bbb rr b r bbb rrn

a+b /'l integer addition

a-»b /1 integer subtraction

a*b /1 integer multiplication

al b /1 integer division. Result is the quotient

a %b /1 nodulo. Result is the remainder after a is divided by b

/1 multiplication has precedence over addition where precedence is not explicitly
/1 indicated by grouping terns with parentheses

PEETTITELE bbb bbb r bbb rrn
/1 Bitwi se Operators
NN NNy
/1 tenp, a, and b are values or register contents of the sane size

tenp = a AND b; /1 Corresponding bits of a and b are |ogically ANDed together
tenp = a OR b; /1l Corresponding bits of a and b are logically ORed together
tenp = a XOR b; /1 Each bit of tenp is the exclusive OR of the correspondi ng
/1 bits of a and b
tenp = NOT a; /1 Each bit of tenp is the conplenent of the correspondi ng
/1 bit of a

/| Concatenation
value = {fieldl,field2, 100b}; //pack values of fieldl, field2 and 100b
size_of (value) = (size of(fieldl) + size of(field2) + 3)

PEELETTEL T rrn
/1 Logical Shift Operators
NNy

tenp = a << b; /1 Result is a shifted left by b bit positions. Zeros are
/1 shifted into vacant positions. Bits shifted out are | ost.
tenp = a >> b; /!l Result is a shifted right by b_bit positions. Zeros are

/1 shifted into vacant positions. Bits shifted out are |ost.

Instruction Overview 61

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

PEOEEEEEE bbb bbb bbb r bbb
/1 Logical Operators

PEOTEEEE bbb bbb bbb bbb bbb r bbb rrnr b
/1 a bool ean variabl e can assune one of two values (TRUE or FALSE)

/'l I'n these exanples, FOO BAR, CONE, and HEAD have been defined to be bool ean

/'l variabl es

FOO && BAR // Logical AND

FOO || BAR // Logical OR

I FOO /1 Logi cal conplenment (NOT)

PEOTTITELE bbb r bbb rrn
/1 Conparison Operators

PEPTTITEL i r bbb r bbb rrn
/1 a and b are integer values. The result is a bool ean val ue.

a == /1 if aand b are equal, the result is TRUE, otherwise it is FALSE

al=b /[l if a and b are not equal, the result is TRUE; otherwise it is FALSE

a>b /1 if ais greater than b, the result is TRUE, otherwise it is FALSE

a<hb /1 if ais less than b, the result is TRUE, otherwise it is FALSE

a>=b /1 if ais greater than or equal to b, the result is TRUE, otherw se
/1 it is FALSE

a<=b /1 if ais less than or equal to b, the result is TRUE, otherw se

/1 it is FALSE
PEPTTTIEL bbb bbb r bbb rrn
/'l Logi cal Expressions
PEETTITELE bbb bbb bbb rrn
/1 Logical binary (two operand) and unary (one operand) operators can be conbi ned
/1 with conparison operators to formnore conpl ex expressions. Parentheses are
/1 used to enclose conparison terns and to show precedence. |f precedence is not
/'l explicitly shown, |ogical AND has precedence over |ogical OR Unary operators
/'l have precedence over binary operators.

FOO & (a < b) || !'BAR // evaluate the conparison a < b first, then
/1 AND this with FOO Finally ORthis internmediate result
/1 with the conpl enent of BAR

/'l Logical expressions can be English phrases that can be evaluated to be TRUE

/1 or FALSE. Statenents assune know edge of the systemarchitecture (Volumes 1 and
11 2).
NNy

IF (it is raining)
cl ose the w ndow

NN NNy
/1 Assignnent Operators
NNy
a=a+b /] The value a is assigned the sumof the values a and b

/1
tenp = RL /1l The contents of the register tenp is replaced by a copy of the

/1l contents of register RI1.

62 Instruction Overview

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
RO += 2 /'l RO is assigned the sumof the contents of RO and the integer 2
/11

R5 | = R6 /'l R5 is assigned the result of the bit-wise OR of the contents of R5
// and R6. Contents of R6 is unchanged.
R4 &= R7 /Il R4 is assigned the result of the bit-wi se AND of the contents of
/1 R4 and R7. Contents of R7 is unchanged.
NNy
/1 | F-THEN- ELSE
NNy
| F (FOO) <expression> /1 evaluation of <expression> is dependent on FOO
/1 being TRUE. If FOO is FALSE, <expression> is not
/] eval uat ed.

| F (FOO
<dependent expressionl> // scope of IF is indicated by indentation

<dependent expressionx>

I F (FOO /1 1f FOOis TRUE, <dependent expression> is
/1 eval uated and the remaining ELSEI F and ELSE
<dependent expression> /1 clauses are skipped.
/1
ELSI F (BAR) /1 IF FOO is FALSE and BAR is TRUE, <alt expression>
<alt expression> /1 is evaluated and the subsequent ELSElIF or ELSE
/1 clauses are skipped.
ELSE
<default expressi ons> /1 evaluated if all the preceeding |F and ELSEI F

// conditions are FALSE.

IF ((FOO & BAR) || (CONE && HEAD)) // The condition can be an expression.
<dependent expressi ons>

NN

/1 Loops
PEOTTITEL bbb bbb bbb rrn
FORi = <init_val> to <final _val> BY <step>

<expressi on> /1 scope of loop is indicated by indentation

/] if <step> =1, may omt "BY" clause

/1 nested | oop exanpl e

tenmp = 0 /linitialize tenp
FORi =0to 7 /1 i takes on the values 0 through 7 in succession
temp += 1 /1 In the outer |oop. Evaluated a total of 8 tines.
For | = 0to 7, BY 2 /1 j takes on the values 0, 2, 4, and 6; but not 7
<i nner - nost exp> /1 This will be evaluated a total of 8 * 4 tines.

<next expression outside both | oops>

Instruction Overview 63

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

/1 C Language form of | oop syntax is also allowed

FOR (i = 0; i < MAX, i++)
{

<expr essi ons> /leval uated MAX tines

}
PEPTTIIEL bbb bbb r bbb rrn
/'l Functions
PEPTTTTEL bbb bbb bbb rrn
/1 Syntax for function definition
<return data type> <function_name>(argunent,..)
<expressi ons>
RETURN <resul t >

PEPTTTTEL bbb bbb r bbb rrn

/1 Built-in Functions

PEETTTTEL bbb rrn

Si gnExtend(arg) // returns value of _arg_ sign extended to the width of the data
/1 type of the function. Data type of function is inferred from
/1 the context of the function's invocation.

ZeroExtend(arg) // returns value of _arg_ zero extended to the width of the data
/1 type of the function. Data type of function is inferred from
/1 the context of the function's invocation.

i ndexof (req) [lreturns binary val ue used to encode reg specification
PEETTIIEL bbb bbb r bbb rrn
/| READ_MEM

/'l General nenory read. This zero-extends the data to 64 bits and returns it.
PEETETTEE bbb rr bbb bbb rrn

usage:
tenp = READ MEM x [seg: of fset] /1 where x is one of {v, z, b, w, d, q}
/1 and denotes the size of the nenory read

definition:

I F ((seg AND OxFFFC) == NULL) /1 @GP fault for using a null segnent to
/'l reference nenory
EXCEPTI ON [#GP(0)]

IF ((seg==CS) || (seg==DS) || (seg==ES) || (seg==FS) || (seg==G3))
/'l CS,DS, ES, FS, GS check for segnent limt or canonica
IF ((!'64BIT_MODE) && (offset is outside seg’s linmt))
EXCEPTI ON [#GP(0)]
/1 #GP fault for segment limt violation in non-64-bit node
IF ((64BI T_MODE) && (offset is non-canonical))
EXCEPTI ON [#GP(0)]
/1 #GP fault for non-canonical address in 64-bit node
ELSI F (seg==SS) /1 SS checks for segment limt or canonica

64 Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

IF ((!64BIT_MODE) && (offset is outside seg’'s linit))
EXCEPTI ON [#SS(0)]
/1 stack fault for segment limt violation in non-64-bit node
IF ((64BI T_MODE) && (offset is non-canonical))
EXCEPTI ON [#SS(0)]
/1 stack fault for non-canonical address in 64-bit node
ELSE // ((seg==CDT) || (seg==LDT) || (seg==IDT) || (seg==TSS))
/| CDT, LDT, | DT, TSS check for segnent linit and canoni cal
IF (offset > seg.limt)
EXCEPTI ON [#GP(0)] [/ #GP fault for segment linmit violation
/1 in all nodes
IF ((LONG_MODE) && (offset is non-canonical))
EXCEPTI ON [#GP(0)] // #GP fault for non-canoni cal address in | ong node

I F ((ALI GNMENT_CHECK_ENABLED) && (of fset mi saligned, considering its
size and alignnent))
EXCEPTI ON [#AC(0)]

IF ((64_bit _node) && ((seg==CS) || (seg==DS) || (seg==ES) || (seg==SS))
tenp_linear = offset

ELSE
tenp_linear = seg.base + offset

| F ((PAG NG_ENABLED) && (virtual-to-physical translation for tenp_|linear
results in a page-protection violation))
EXCEPTI ON [#PF(error_code)] // page fault for page-protection violation
/1 (US violation, Reserved bit violation)

I F ((PAG NG ENABLED) && (tenp_linear is on a not-present page))
EXCEPTI ON [#PF(error_code)] // page fault for not-present page

tenp_data = nenory [tenp_linear].Xx /1 zero-extends the data to 64
/1 bits, and saves it in tenp_data

RETURN (t enp_dat a) /1 return the zero-extended data

NN NNy
/I WRITE_MEM // General nmenory wite
NN NNy

usage:
VWRI TE MEM x [seg: offset] = tenmp.x /1l where <X> is one of these:
/1 {V, Z, BB W D, @ and denotes the
/1 size of the menory wite

definition:
I F ((seg & OxFFFC)== NULL) /1 @GP fault for using a null segnent

/1 to reference nenory
EXCEPTI ON [#GP(0)]

Instruction Overview 65

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017

IF (seg isn't witable) /]l GP fault for witing to a read-only segnent
EXCEPTI ON [#GP(0)]

IF ((seg==CS) || (seg==DS) || (seg==ES) || (seg==FS) || (seg==G3))
/'l CS, DS, ES, FS, GS check for segnent limt or canonica
IF ((!64BIT_MODE) && (offset is outside seg’'s linit))
EXCEPTI ON [#GP(0)]
/1 #GP fault for segment linit violation in non-64-bit node
IF ((64BI T_MODE) && (offset is non-canonical))
EXCEPTI ON [#GP(0)]
/1 #GP fault for non-canonical address in 64-bit node
ELSI F (seg==SS) /1 SS checks for segnent linit or canonica
IF ((!'64BI T_MODE) && (offset is outside seg’s limt))
EXCEPTI ON [#SS(0)]
/1 stack fault for segment limt violation in non-64-bit node
IF ((64BI T_MODE) && (offset is non-canonical))
EXCEPTI ON [#SS(0)]
/1 stack fault for non-canonical address in 64-bit node
ELSE // ((seg==CDT) || (seg==LDT) || (seg==IDT) || (seg==TSS))
/1 @DT, LDT, | DT, TSS check for segnent limt and canonica
IF (offset > seg.limt)
EXCEPTI ON [#GP(0)]
/1 #GP fault for segnment linmt violation in all nodes
IF ((LONG_MODE) && (offset is non-canonical))
EXCEPTI ON [#GP(0)]
/1 #GP fault for non-canonical address in |ong node

I F ((ALI GNMVENT _CHECK ENABLED) && (offset is msaligned, considering
its size and alignnent))
EXCEPTI ON [#AC(0)]

IF ((64_bit_node) && ((seg==CS) || (seg==DS) || (seg==ES) || (seg==SS))
tenp_linear = offset

ELSE
tenp_linear

seg. base + of fset

I F ((PAG NG ENABLED) && (the virtual -to-physical translation for
tenp_linear results in a page-protection violation))

{
EXCEPTI ON [#PF(error_code)]
/1 page fault for page-protection violation
/1 (US violation, Reserved bit violation)
}
I F ((PAG NG ENABLED) && (tenp_linear is on a not-present page))
EXCEPTI ON [#PF(error_code)] /1 page fault for not-present page
menory [tenp_linear].x = tenp.x /1 wite the bytes to nenory

66

Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

FHEELETEE i iiriririrrriringi
I/ PUSH // Wite data to the stack
FHELEETEEE i riririririrgi

usage:
PUSH. x tenp /1l where x is one of these: {v, z, b, w, d, q} and
/1 denotes the size of the push

definition:

WRITE MEM X [SS: RSP.s - X] = tenp.x /1 wite to the stack
RSP.s = RSP - X /1 point rsp to the data just witten

FHEEELTEEE i rirrrirrriringi
[l POP |/ Read data fromthe stack, zero-extend it to 64 bits
FHEEEEEE i riririrrririrgd

usage:
POP. x tenp /1 where x is one of these: {v, z, b, w, d, g} and
/1 denotes the size of the pop

definition:

tenp = READ MEM x [SS: RSP. s] /1 read fromthe stack
RSP.s = RSP + X /1 point rsp above the data just witten

PEETTTTEL bbb bbb r bbb rrn
/1 READ DESCRI PTOR // Read 8-byte descriptor from GDT/LDT, return the descriptor
PEETTTTEL bbb bbb rr b r bbb rrn

usage:
tenp_descriptor = READ DESCRI PTOR (sel ector, chktype)
/'l chktype field is one of the follow ng:

/1 cs_chk used for far call and far junp
/1 clg_chk used when reading CS for far call or far junp through call gate
/'l ss_chk used when readi ng SS

[l iret_chk used when reading CS for IRET or RETF
/1 intcs_chk wused when readin the CS for interrupts and exceptions

definition:

tenp_offset = selector AND Oxfff8 // upper 13 bits give an of fset
/1 in the descriptor table

I F (selector. Tl == 0) /1 read 8 bytes fromthe gdt, split it into
/1 (base,limt,attr) if the type bits
tenp_desc = READ MEM q [gdt:tenp_offset]
/1 indicate a block of nmenory, or split
/1 it into (segnent,offset,attr)

Instruction Overview 67

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

/1 if the type bits indicate

/'l a gate, and save the result in tenp_desc

ELSE
tenp_desc = READ MEM q [l dt:tenp_offset]

/'l read 8 bytes fromthe Idt, split it into
/1 (base,linmt,attr) if the type bits
/1 indicate a block of nmenory, or split

/1 it into (segment,offset,attr) if the type

/1 bits indicate a gate, and save the result
/1 in tenp_desc

I F (selector.rpl or tenp _desc.attr.dpl is illegal for the current node/cpl)
EXCEPTI ON [#GP(sel ector)]

I F (tenp_desc.attr.type is illegal for the current node/chktype)
EXCEPTI ON [#GP(sel ector)]

I F (tenp_desc. attr. p==0)
EXCEPTI ON [#NP(sel ector)]

RETURN (t enp_desc)

PEETTTTEL bbb bbb rrn
/1l READ IDT // Read an 8-byte descriptor fromthe IDT, return the descriptor
NN NN NNy

usage:
tenp_idt_desc = READ IDT (vector)
/1 "vector" is the interrupt vector nunber

definition:

I F (LONG_MODE) /1 long-node idt descriptors are 16 bytes |ong
tenp_offset = vector*16

ELSE // (LEGACY_MODE) | egacy-protected-node idt descriptors are 8 bytes |ong
tenp_offset = vector*8

tenp_desc = READ MEM q [idt:tenp_of fset]
/1l read 8 bytes fromthe idt, split it into
/1 (segment,offset,attr), and save it in tenp_desc

IF (tenp_desc.attr.dpl is illegal for the current node/cpl)
/1 exception, with error code that indicates this idt gate
EXCEPTI ON [#GP(vect or *8+2)]

IF (tenp_desc.attr.type is illegal for the current node)
/1l exception, with error code that indicates this idt gate
EXCEPTI ON [#GP(vect or *8+2)]

I F (tenp_desc. attr. p==0)

68 Instruction Overview

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

EXCEPTI ON [#NP(vect or *8+2)]
/] segment-not-present exception, with an error code that
/1 indicates this idt gate

RETURN (t enp_desc)

PEETTITEL i r bbb r bbb rrn
/| READ_| NNER_LEVEL_STACK_ PO NTER

/1l Read a new stack pointer (rsp or ss:esp) fromthe tss

PEPTTTTELE i r bbb rrn

usage:
tenp_SS desc: tenp_RSP = READ | NNER_LEVEL_STACK_PO NTER (new_cpl, ist_index)

definition:

I F (LONG_MODE)
{
I F (ist_index>0)
[l if IST is selected, read an | STn stack pointer fromthe tss
tenp RSP = READ MEM g [tss:ist_index*8+28]
ELSE // (ist_index==0)
/1 otherwi se read an RSPn stack pointer fromthe tss
tenp_RSP = READ MEM q [tss: new cpl *8+4]

tenp_SS desc.sel = NULL + new cpl
/1 in long node, changing to | ower cpl sets SS.sel to
/1 NULL+new cpl

}
ELSE // (LEGACY_MODE)

{
tenp_RSP = READ MEM d [tss: new cpl *8+4] /1 read ESPn fromthe tss
tenp_sel = READ MEM d [tss: new cpl *8+8] /1 read SSn fromthe tss
tenp_SS desc = READ DESCRI PTOR (tenp_sel, ss_chk)

}

return (tenp_RSP:tenp_SS desc)

NN NN NNy
/1 READ BIT ARRAY // Read 1 bit froma bit array in nenory
PEETETTEL bbb bbb rr b r bbb rrn

usage:
tenp_value = READ BI T_ARRAY ([nmeni, bit_nunber)

definition:

tenp_BYTE = READ MEM b [nem + (bit_nunber SHR 3)]
/1 read the byte containing the bit

Instruction Overview 69

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

tenmp_ BIT = tenp_BYTE SHR (bit_nunber & 7)
/1 shift the requested bit position into bit O

return (tenp_BIT & 0x01) /1 return’'0 or "1

70 Instruction Overview

AMDA
AMDG64 Technology

24594—Rev. 3.25—December 2017

3 General-Purpose Instruction Reference

This chapter describes the function, mnemonic syntax, opcodes, affected flags, and possible
exceptions generated by the general-purpose instructions. General-purpose instructions are used in
basic software execution. Most of these instructions load, store, or operate on data located in the
general-purpose registers (GPRs), in memory, or in both. The remaining instructions are used to alter
the sequential flow of the program by branching to other locations within the program, or to entirely
different programs. With the exception of the MOVD, MOVMSKPD and MOVMSKPS instructions,
which operate on MMX/XMM registers, the instructions within the category of general-purpose
instructions do not operate on any other register set.

Most general-purpose instructions are supported in all hardware implementations of the AMD64
architecture. However, some instructions in this group are optional and support must be determined by
testing processor feature flags using the CPUID instruction. These instructions are listed in Table 3-1,
along with the CPUID function, the register and bit used to test for the presence of the instruction.

Table 3-1. Instruction Support Indicated by CPUID Feature Bits

Instruction CPUID Function(s) Register[Bit] Feature Flag
gﬁgu'\";‘qip“'a“o” Instructions - 0000_0007h (ECX=0) EBX[3] BMI1
gﬁgh"‘fgip“'a“o” Instructions - 0000_0007h (ECX=0) EBX[8] BMI2
CMPXCHGSB 0000_0001h, 8000_00071h EDX[8] CMPXCHG8B
CMPXCHG16B 0000_0001h ECX[13] CMPXCHG16B
CMOVcc (Conditional Moves) | 0000_0001h, 8000_0001h EDX[15] CMOV
CLFLUSH 0000_0001h EDX[19] CLFSH
CRC32 0000_0001h ECX[20] SSE42
LZCNT 8000_0001h ECX[5] ABM
Long Mode and Long Mode 8000_0001h EDX[29] LM
MFENCE, LFENCE 0000_0001h EDX[26] SSE2
MOVBE 0000_0001h ECX[22] MOVBE

0000_0001h, 8000_00071h EDX[23] MMX
MOVD' 0000_0007h EDX[26] SSE2
MOVNTI 0000_0007h EDX[26] SSE2
POPCNT 0000_0001h ECX[23] POPCNT
ECX[8] 3DNowPrefetch
ggg:ﬁgg:\;\ﬂ 8000_0001h EDX[29] LM
EDX[31] 3DNow
\%EI)QFFSSBBAA%%, NTAArY 0000_0007h (ECX=0) EBX[0] FSGSBASE

General-Purpose
Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

Table 3-1. Instruction Support Indicated by CPUID Feature Bits

Instruction CPUID Function(s) Register[Bit] Feature Flag
SFENCE 0000_0001h EDX[25] SSE
Trailing Bit Manipulation
Instructions 8000_0001h ECX[21] TBM

Notes:

1. The MOVD variant that moves values to or from MMX registers is part of the MMX subset; the MOVD variant that
moves data to or from XMM registers is part of the SSE2 subset.

2. Instruction is supported if any one of the listed feature flags is set.

For more information on using the CPUID instruction, see the reference page for the CPUID
instruction on page 158. For a comprehensive list of all instruction support feature flags, see
Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

The general-purpose instructions can be used in legacy mode or 64-bit long mode. Compilation of
general-purpose programs for execution in 64-bit long mode offers three primary advantages: access
to the eight extended, 64-bit general-purpose registers (for a register set consisting of GPRO—GPR15),
access to the 64-bit virtual address space, and access to the RIP-relative addressing mode.

For further information about the general-purpose instructions and register resources, see:
* “General-Purpose Programming” in Volume 1.

e “Summary of Registers and Data Types” on page 38.

e “Notation” on page 52.

e “Instruction Prefixes” on page 5.

* Appendix B, “General-Purpose Instructions in 64-Bit Mode.” In particular, see “General Rules for
64-Bit Mode” on page 499.

72 General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

AAA ASCII Adjust After Addition

Adjusts the value in the AL register to an unpacked BCD value. Use the AAA instruction after using
the ADD instruction to add two unpacked BCD numbers.

The instruction is coded without explicit operands:
AAA

If the value in the lower nibble of AL is greater than 9 or the AF flag is set to 1, the instruction
increments the AH register, adds 6 to the AL register, and sets the CF and AF flags to 1. Otherwise, it
does not change the AH register and clears the CF and AF flags to 0. In either case, AAA clears bits
7:4 of the AL register, leaving the correct decimal digit in bits 3:0.

This instruction also makes it possible to add ASCII numbers without having to mask off the upper
nibble ‘3’.

MXCSR Flags Affected

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Create an unpacked BCD number.
AAA 37 (Invalid in 64-bit mode.)

Related Instructions

AAD, AAM, AAS

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u U u M u M
21 120 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
g‘dgﬁd opcode, X This instruction was executed in 64-bit mode.

General-Purpose AAA 73
Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

AAD ASCII Adjust Before Division

Converts two unpacked BCD digits in the AL (least significant) and AH (most significant) registers to
a single binary value in the AL register.

The instruction is coded without explicit operands:
AAD

The instruction performs the following operation on the contents of AL and AH using the formula:
AL = ((10d * AH) + (AL))

After the conversion, AH is cleared to 00h.

In most modern assemblers, the AAD instruction adjusts from base-10 values. However, by coding the
instruction directly in binary, it can adjust from any base specified by the immediate byte value (ib)
suffixed onto the D5h opcode. For example, code D508h for octal, DSOAh for decimal, and D50Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
Adjust two BCD digits in AL and AH.
AAD D5 0A (Invalid in 64-bit mode.)
; Adjust two BCD digits to the immediate byte base.
(None) D5 ib (Invalid in 64-bit mode.)

Related Instructions

AAA, AAM, AAS

rFLAGS Affected

ID |VIP| VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u M M u M U

21 120 |19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
;I#nl\J/S”d opcode, X This instruction was executed in 64-bit mode.
74 AAD General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

AAM ASCII Adjust After Multiply

Converts the value in the AL register from binary to two unpacked BCD digits in the AH (most
significant) and AL (least significant) registers.
The instruction is coded without explicit operands:
AAM
The instruction performs the following operation on the contents of AL and AH using the formula:

AH = (AL/ 10d)
AL = (AL nod 10d)

In most modern assemblers, the AAM instruction adjusts to base-10 values. However, by coding the
instruction directly in binary, it can adjust to any base specified by the immediate byte value (ib)
suffixed onto the D4h opcode. For example, code D408h for octal, D40Ah for decimal, and D40Ch for
duodecimal (base 12).

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description
Create a pair of unpacked BCD values in AH and AL.
AAM D4 0A (Invalid in 64-bit mode.)
Create a pair of unpacked values to the immediate byte
(None) D4 ib base.

(Invalid in 64-bit mode.)

Related Instructions

AAA, AAD, AAS

rFLAGS Affected
ID |VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF
U M M U M U
21 20 | 19 | 18 | 17 | 16 | 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M. Unaffected flags are blank. Undefined
flags are U.
Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
Divide by zero, #DE | X X X 8-bit immediate value was 0.
:;Jg”d opcode, X This instruction was executed in 64-bit mode.
General-Purpose AAM 75

Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

AAS ASCII Adjust After Subtraction

Adjusts the value in the AL register to an unpacked BCD value. Use the AAS instruction after using
the SUB instruction to subtract two unpacked BCD numbers.

The instruction is coded without explicit operands:
AAS

If the value in AL is greater than 9 or the AF flag is set to 1, the instruction decrements the value in
AH, subtracts 6 from the AL register, and sets the CF and AF flags to 1. Otherwise, it clears the CF and
AF flags and the AH register is unchanged. In either case, the instruction clears bits 7:4 of the AL
register, leaving the correct decimal digit in bits 3:0.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Create an unpacked BCD number from the contents of
AAS 3F the AL register.
(Invalid in 64-bit mode.)

Related Instructions

AAA, AAD, AAM

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
u u u M u M
21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
g‘dgﬁd opcode, X This instruction was executed in 64-bit mode.
76 AAS General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

ADC Add with Carry

Adds the carry flag (CF), the value in a register or memory location (first operand), and an immediate
value or the value in a register or memory location (second operand), and stores the result in the first
operand location.

The instruction has two operands:
ADC dest, src

The instruction cannot add two memory operands. The CF flag indicates a pending carry from a
previous addition operation. The instruction sign-extends an immediate value to the length of the
destination register or memory location.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

Use the ADC instruction after an ADD instruction as part of a multibyte or multiword addition.

The forms of the ADC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description
ADC AL, imm8 14 ib Add imm8 to AL + CF.
ADC AX, imm16 15 iw Add imm16 to AX + CF.
ADC EAX, imm32 15id Add imm32 to EAX + CF.
ADC RAX, imm32 15id Add sign-extended imm32 to RAX + CF.
ADC reg/mem8, imm8 80/2ib Add imm8 to reg/mem8 + CF.
ADC reg/mem16, imm16 81/2iw Add imm16 to reg/mem16 + CF.
ADC reg/mem32, imm32 81/2id Add imm32 to reg/mem32 + CF.
ADC reg/mem64, imm32 81/2id Add sign-extended imm32 to reg/mem64 + CF.
ADC reg/mem16, imm8 83/2ib Add sign-extended imm8 to reg/mem16 + CF.
ADC reg/mem32, imm8 83/21ib Add sign-extended imm8 to reg/mem32 + CF.
ADC reg/mem64, imm8 83/21ib Add sign-extended imm8 to reg/mem64 + CF.
ADC reg/mem8, reg8 10 /r Add reg8 to reg/mem8 + CF
ADC reg/mem16, reg16 M Add reg16 to reg/mem16 + CF.
ADC reg/mem32, reg32 M Add reg32 to reg/mem32 + CF.
ADC reg/mem64, reg64 M Add reg64 to reg/mem64 + CF.
ADC reg8, reg/mem8 12 /r Add reg/mem8 to reg8 + CF.
ADC reg16, reg/mem16 13/r Add reg/mem16 to regl6 + CF.
General-Purpose ADC 77

Instruction Reference

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
Mnemonic Opcode Description

ADC reg32, reg/mem32 13/r Add reg/mem32 to reg32 + CF.

ADC reg64, reg/mem64 13/r Add reg/mem64 to reg64 + CF.

Related Instructions

ADD, SBB, SUB

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M

21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X ;
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
78 ADC General-Purpose

Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

ADCX

Adds the value in a register (first operand) with a register or memory (second operand) and the carry
flag, and stores the result in the first operand location.

AMDG64 Technology

Unsigned ADD with Carry Flag

This instruction sets the CF based on the unsigned addition. This instruction is useful in multi-
precision addition algorithms.

Mnemonic

ADCX reg32, reg/mem32

ADCX reg64, reg/mem64

Related Instructions

Opcode
66 OF 38 F6 /r
66 OF 38 F6 /r

Description
Unsigned add with carryflag
Unsigned add with carry flag.

ADOX

rFLAGS Affected

ID |[VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF
M

21 (20|19 |18 |17 |16 | 14| 1312 | 11 | 10| 9 | 8 | 7 | 6 | 4 | 2 | O

blank.Undefined flags are U.

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are

Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception
A memory address exceeded the stack segment limit or
Stack, #3S X X X was non-canonical.
X X X A memory address exceeded a data segment limit or was
non-canonical.
General protection, #GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.
X X X Instruction not supported by CPUID
Invalid opcode, #UD Fn0000_0007_EBX[ADX] = 0.
X X Lock prefix (FOh) preceding opcode.

General-Purpose

Instruction Reference

ADD 79

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

ADD Signed or Unsigned Add

Adds the value in a register or memory location (first operand) and an immediate value or the value in
a register or memory location (second operand), and stores the result in the first operand location.
The instruction has two operands:

ADD dest, src

The instruction cannot add two memory operands. The instruction sign-extends an immediate value to
the length of the destination register or memory operand.

This instruction evaluates the result for both signed and unsigned data types and sets the OF and CF
flags to indicate a carry in a signed or unsigned result, respectively. It sets the SF flag to indicate the
sign of a signed result.

The forms of the ADD instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description
ADD AL, imm8 04 ib Add imm8 to AL.
ADD AX, imm16 05 iw Add imm16 to AX.
ADD EAX, imm32 05id Add imm32 to EAX.
ADD RAX, imm32 05id Add sign-extended imm32 to RAX.
ADD reg/mem8, imm8 80/0ib Add imm8 to reg/mem8.
ADD reg/mem16, imm16 81 /0 iw Add imm16 to reg/mem16
ADD reg/mem32, imm32 81/0id Add imm32 to reg/mem32.
ADD reg/mem64, imm32 81/0id Add sign-extended imm32 to reg/mem64.
ADD reg/mem16, imm8 83/0ib Add sign-extended imm8 to reg/mem16
ADD reg/mem32, imm8 83/0ib Add sign-extended imm8 to reg/mem32.
ADD reg/mem64, imm8 83/0ib Add sign-extended imm8 to reg/mem64.
ADD reg/mems8, reg8 00 /r Add reg8 to reg/mems8.
ADD reg/mem16, reg16 01/r Add reg16 to reg/mem16.
ADD reg/mem32, reg32 01/r Add reg32 to reg/mem32.
ADD reg/mem64, reg64 01/r Add reg64 to reg/mem64.
ADD reg8, reg/mem3 02 /r Add reg/mem8 to reg8.
ADD reg16, reg/mem16 03 /r Add reg/mem16 to regl6.
ADD reg32, reg/mem32 03 /r Add reg/mem32 to reg32.
ADD reg64, reg/mem64 03 /r Add reg/mem64 to reg64.
80 ADD General-Purpose

Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

Related Instructions

AMDG64 Technology

ADC, SBB, SUB

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| M| M| M

21 | 20|19 | 18 | 17 | 16 | 14 13:12 11 |10 | 9 8 7 6 4 2 0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception

A memory address exceeded the stack segment limit or was

Stack, #5S X X non-canonical.
A memory address exceeded a data segment limit or was non-

X X .
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

ADD 81

AMDAQ

AMDG64 Technology

ADOX

24594—Rev. 3.25—December 2017

Unsigned ADD with Overflow Flag

Adds the value in a register (first operand) with a register or memory (second operand) and the
overflow flag, and stores the result in the first operand location.

This instruction sets the OF based on the unsigned addition and whether there is a carry out. This
instruction is useful in multi-precision addition algorithms.

Mnemonic

ADOX reg32, reg/mem32

ADOX reg64, reg/mem64

Related Instructions

Opcode

F3 OF 38 F6 /r
F3 OF 38 F6 /r

Description
Unsigned add with overflow flag

Unsigned add with overflow flag.

ADCX

rFLAGS Affected

ID |[VIP|VIF| AC | VM | RF | NT IOPL OF |DF | IF | TF | SF | ZF | AF | PF | CF
M

21 120|119 |18 |17 | 16 | 14| 1312 |11 | 10| 9 | 8 | 7 | 6 | 4 | 2| O

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are
blank.Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 [Protected Cause of Exception
A memory address exceeded the stack segment limit or
Stack, #8S X X X was non-canonical.
X X X A memory address exceeded a data segment limit or was
non-canonical.
General protection, #GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X X alignment checking was enabled.
X X X Instruction not supported by CPUID
Invalid opcode, #UD Fn0000_0007_EBX[ADX] = 0.
Lock prefix (FOh) preceding opcode.

82

ADD General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

AND Logical AND

Performs a bit-wise logical and operation on the value in a register or memory location (first operand)
and an immediate value or the value in a register or memory location (second operand), and stores the
result in the first operand location. Both operands cannot be memory locations.

The instruction has two operands:

AND dest, src

The instruction sets each bit of the result to 1 if the corresponding bit of both operands is set;
otherwise, it clears the bit to 0. The following table shows the truth table for the logical and operation:

X Y XandyY
0 0
0 1 0
1 0 0
1 1 1

The forms of the AND instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description

AND AL, imm8 24 ib and the qontents of AL with an immediate 8-bit value and store
the result in AL.

AND AX, imm16 25 iw and the c_ontents of AX with an immediate 16-bit value and store
the result in AX.

AND EAX, imm32 25 id and the conten_ts of EAX with an immediate 32-bit value and
store the result in EAX.

AND RAX, imm32 25 id and the contents of RAX _with a sign-extended immediate 32-bit
value and store the result in RAX.

AND reg/mem8, imm8 80 /4 ib and the contents of reg/mem8 with imm8.
AND reg/mem16, imm16 81 /4 iw and the contents of reg/mem16 with imm16.
AND reg/mem32, imm32 81/4id and the contents of reg/mem32 with imm32.

AND reg/mem64, imm32 81 /4 id and the contents of reg/mem64 with sign-extended imm32.

AND reg/mem16, imm8 83 /4 ib and the contents of reg/mem16 with a sign-extended 8-bit value.

AND reg/mem32, imm8 83/41ib and the contents of reg/mem32 with a sign-extended 8-bit value.

AND reg/mem64, imm8 83/4ib and the contents of reg/mem64 with a sign-extended 8-bit value.
General-Purpose AND 83

Instruction Reference

AMDAQ

AMDG64 Technology

Mnemonic

AND reg/mema8, reg8

AND reg/mem16, regl6
AND reg/mem32, reg32
AND reg/mem64, reg64
AND reg8, reg/mem38

AND reg16, reg/mem16
AND reg32, reg/mem32

AND reg64, reg/mem64

Related Instructions

Opcode

20 /r

21 1Ir

21 1Ir

21 1Ir

22 Ir

231r

231r

231r

TEST, OR, NOT, NEG, XOR

24594—Rev. 3.25—December 2017

Description

and the contents of an 8-bit register or memory location with the
contents of an 8-bit register.

and the contents of a 16-bit register or memory location with the
contents of a 16-bit register.

and the contents of a 32-bit register or memory location with the
contents of a 32-bit register.

and the contents of a 64-bit register or memory location with the
contents of a 64-bit register.

and the contents of an 8-bit register with the contents of an 8-bit
memory location or register.

and the contents of a 16-bit register with the contents of a 16-bit
memory location or register.

and the contents of a 32-bit register with the contents of a 32-bit
memory location or register.

and the contents of a 64-bit register with the contents of a 64-bit
memory location or register.

rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 M M U M 0
21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 1 |10 | 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #SS X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X ;
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
84 AND General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

ANDN Logical And-Not

Performs a bit-wise logical and of the second source operand and the one's complement of the first
source operand and stores the result into the destination operand.

This instruction has three operands:
ANDN dest, srcl, src2

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination operand (dest) is always a general purpose register.

The first source operand (Srcl) is a general purpose register and the second source operand (Src2) is
either a general purpose register or a memory operand.

This instruction implements the following operation:

not tnp, srcl
and dest, tnmp, src2

The flags are set according to the result of the and pseudo-operation.

The ANDN instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
ANDN reg32, reg32, reg/mem32 C4 RXB.02 0.src1.0.00 F2/r
ANDN reg64, reg64, reg/mem64 C4 RXB.02 1.src1.0.00 F2/r

Related Instructions

BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose ANDN 85
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U|U/|O

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
. Mode .
Exception - Cause of Exception
Real | Virt | Prot
X X BMI instructions are only recognized in protected mode.

BMI instructions are not supported as indicated by CPUID

Invalid opcode, #UD X | Fn0000_0007 EBX_xO[BMI] = 0.
VEX.Lis 1.
A memory address exceeded the stack segment limit or was
Stack, #3S X non-canonical.
X A memory address exceeded a data segment limit or was non-
General protection, #GP canonical.
X | A null data segment was used to reference memory.
Page fault, #PF X | A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

86

ANDN General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
BEXTR Bit Field Extract
(register form)

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:
BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is either a general purpose register or a memory operand.

The control (cntl) operand is a general purpose register that provides two fields describing the range of
bits to extract:

* Isb_index (in bits 7:0)—specifies the index of the least significant bit of the field
» length (in bits 15:8)—specifies the number of bits in the field.

The position of the extracted field can be expressed as:
[Isb_index+ length— 1] : [Isb_index]

For example, if the Isb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a BMI1 instruction. Support for this instruction is indicated by
CPUID Fn0000_0007 _EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, reg32 C4 RXB.02 0.cntl.0.00 F7 Ir
BEXTR reg64, reg/mem64, reg64 C4 RXB.02 1.cntl.0.00 F7 Ir
General-Purpose BEXTR (register form) 87

Instruction Reference

AMDAQ

AMDG64 Technology

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL | OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 U M U U 0

21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 M|10| 9| 8 |7 |6 |4 |20

Note: Bits 31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Invalid opcode, #UD

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X BMI instructions are only recognized in protected mode.

BMI instructions are not supported, as indicated by
CPUID Fn0000_0007_EBX_x0[BMI] = 0.

X VEX.Lis 1.
A memory address exceeded the stack segment limit or

Stack, #5S X was non-canonical.

X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.

X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.

; An unaligned memory reference was performed while

Alignment check, #AC X alignment checking was enabled.
88 BEXTR (register form) General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BEXTR Bit Field Extract
(immediate form)

Extracts a contiguous field of bits from the first source operand, as specified by the control field setting
in the second source operand and puts the extracted field into the least significant bit positions of the
destination. The remaining bits in the destination register are cleared to 0.

This instruction has three operands:
BEXTR dest, src, cntl

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is either a general purpose register or a memory operand.

The control (cntl) operand is a 32-bit immediate value that provides two fields describing the range of
bits to extract:

e Isb_index (in immediate operand bits 7:0)—specifies the index of the least significant bit of the
field

* length (in immediate operand bits 15:8)—specifies the number of bits in the field.
The position of the extracted field can be expressed as:
[Isb_index +length— 1] : [Isb_index]

For example, if the Isb_index is 7 and length is 5, then bits 11:7 of the source will be copied to bits 4:0
of the destination, with the rest of the destination being zero-filled. Zeros are provided for any bit
positions in the specified range that lie beyond the most significant bit of the source operand. A length
value of zero results in all zeros being written to the destination.

This form of the BEXTR instruction is a TBM instruction. Support for this instruction is indicated by
CPUID Fn8000 0001 ECX[TBM] =1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode

BEXTR reg32, reg/mem32, imm32 8F RXB.0A 0.1111.0.00 10 /r/id
BEXTR reg64, reg/mem64, imm32 8F RXB.0A 1.1111.0.00 10 /r/id
General-Purpose BEXTR (immediate form) 89

Instruction Reference

AMDAQ

AMDG64 Technology

Related Instructions

ANDN, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL | OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 U M U U 0

21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 M|10| 9| 8 |7 |6 |4 |20

Note: Bits 31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual
Exception Real| 8086 |Protected Cause of Exception
X X TBM instructions are only recognized in protected mode.
: TBM instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn8000_0001_ECX[TBM] = 0.
X XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #5S X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.
90 BEXTR (immediate form) General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLCFILL Fill From Lowest Clear Bit

Finds the least significant zero bit in the source operand, clears all bits below that bit to 0 and writes
the result to the destination. If there is no zero bit in the source operand, the destination is written with
all zeros.
This instruction has two operands:

BLCFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is a general purpose register or a memory operand.

The BLCFILL instruction effectively performs a bit-wise logical and of the source operand and the
result of incrementing the source operand by 1 and stores the result to the destination register:

add tnp, src, 1
and dest,tnp, src

The value of the carry flag of rTFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01 /1
BLCFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01 /1

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLCFILL 91
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X TBM instructions are only recognized in protected mode.
. TBM instructions are not supported, as indicated by
Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #58 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

92

B

LCFILL General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLCI Isolate Lowest Clear Bit

Finds the least significant zero bit in the source operand, sets all other bits to 1 and writes the result to
the destination. If there is no zero bit in the source operand, the destination is written with all ones.
This instruction has two operands:

BLCI dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is a general purpose register or a memory operand.

The BLCI instruction effectively performs a bit-wise logical or of the source operand and the inverse
of the result of incrementing the source operand by 1, and stores the result to the destination register:

add tnp, src, 1

not tmp, tnp
or dest, tnp, src

The value of the carry flag of rFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the or pseudo-instruction.

The BLCI instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCI reg32, reg/mem32 8F RXB.09 0.dest.0.00 02 /6
BLCI reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /6

Related Instructions

ANDN, BEXTR, BLCFILL, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLCI 93
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X TBM instructions are only recognized in protected mode.
. TBM instructions are not supported, as indicated by
Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #58 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

94

BLCI General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLCIC Isolate Lowest Clear Bit and Complement

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all other bits to 0 and
writes the result to the destination. If there is no zero bit in the source operand, the destination is
written with all zeros.
This instruction has two operands:

BLCIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is a general purpose register or a memory operand.

The BLCIC instruction effectively performs a bit-wise logical and of the negation of the source
operand and the result of incrementing the source operand by 1, and stores the result to the destination
register:

add tnpl, src, 1
not tnp2, src
and dest, tnpl,tnp2

The value of the carry flag of rTFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the and pseudo-instruction.

The BLCIC instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01/5
BLCIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01/5

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLCIC 95
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X TBM instructions are only recognized in protected mode.
. TBM instructions are not supported, as indicated by
Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #58 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

96

BLCIC General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLCMSK Mask From Lowest Clear Bit

Finds the least significant zero bit in the source operand, sets that bit to 1, clears all bits above that bit
to 0 and writes the result to the destination. If there is no zero bit in the source operand, the destination
is written with all ones.

This instruction has two operands:
BLCMSK dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is a general purpose register or a memory operand.

The BLCMSK instruction effectively performs a bit-wise logical xor of the source operand and the
result of incrementing the source operand by 1 and stores the result to the destination register:

add tnpl, src, 1
xor dest, tnpl,src

The value of the carry flag of rTFLAGS is generated according to the result of the add pseudo-
instruction and the remaining arithmetic flags are generated by the xor pseudo-instruction.

If the input is all ones, the output is a value with all bits set to 1.

The BLCMSK instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Instruction Encoding

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCMSK reg32, reg/mem32 8F RXB.09 0.dest.0.00 021
BLCMSK reg64, reg/mem64 8F RXB.09 1.dest.0.00 02 /1

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLCMSK 97
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X TBM instructions are only recognized in protected mode.
. TBM instructions are not supported, as indicated by
Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #58 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

98

B

LCMSK General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLCS Set Lowest Clear Bit

Finds the least significant zero bit in the source operand, sets that bit to 1 and writes the result to the
destination. If there is no zero bit in the source operand, the source is copied to the destination (and CF
inrTFLAGS is setto 1).

This instruction has two operands:
BLCS dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is a general purpose register or a memory operand.

The BLCS instruction effectively performs a bit-wise logical or of the source operand and the result
of incrementing the source operand by 1, and stores the result to the destination register:

add tnmp, src, 1
or dest, tnp, src

The value of the carry flag of rTFLAGS is generated by the add pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLCS instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLCS reg32, reg/mem32 8F RXB.09 0.dest.0.00 01/3
BLCS reg64, reg/mem64 8F RXB.09 1.dest.0.00 01/3

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLSFILL, BLSI, BLSIC, BLSR, BLSMSK,
BSF, BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLCS 99
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X TBM instructions are only recognized in protected mode.
. TBM instructions are not supported, as indicated by
Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #58 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

100

BLCS General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLSFILL Fill From Lowest Set Bit

Finds the least significant one bit in the source operand, sets all bits below that bit to 1 and writes the
result to the destination. If there is no one bit in the source operand, the destination is written with all
ones.
This instruction has two operands:

BLSFILL dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is a general purpose register or a memory operand.

The BLSFILL instruction effectively performs a bit-wise logical or of the source operand and the
result of subtracting 1 from the source operand, and stores the result to the destination register:

sub tnmp, src, 1
or dest, tnp, src

The value of the carry flag of rFLAGs is generated by the Sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSFILL instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLSFILL reg32, reg/mem32 8F RXB.09 0.dest.0.00 01/2
BLSFILL reg64, reg/mem64 8F RXB.09 1.dest.0.00 01/2

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSI, BLSIC, BLSR, BLSMSK, BSF,
BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLSFILL 101
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Exception Virtual Cause of Exception
Real| 8086 [Protected
X X TBM instructions are only recognized in protected mode.
. TBM instructions are not supported, as indicated by
Invalid opcode, #UD X' | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #58 X was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
: An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

102

B

LSFILL General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLSI Isolate Lowest Set Bit

Clears all bits in the source operand except for the least significant bit that is set to 1 and writes the
result to the destination. If the source is all zeros, the destination is written with all zeros.

This instruction has two operands:
BLSI dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is either a general purpose register or a bit memory operand.

This instruction implements the following operation:

neg tnp, srcl
and dst, tnp, srcl

The value of the carry flag is generated by the neg pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSI instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 _EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
BLSI reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3/3
BLSI reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3/3

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSIC, BLSR, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLSI 103
Instruction Reference

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0 M M U U M
21 120 | 19 | 18 | 17 | 16 | 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.
Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI instructions are only recognized in protected mode.
. BMI instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007 _EBX_ xO[BMI] = 0.
VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #5S was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.
104 BLSI General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLSIC Isolate Lowest Set Bit and Complement

Finds the least significant bit that is set to 1 in the source operand, clears that bit to 0, sets all other bits
to 1 and writes the result to the destination. If there is no one bit in the source operand, the destination
is written with all ones.
This instruction has two operands:

BLSIC dest, src

In 64-bit mode, the operand size is determined by the value of XOP.W. If XOP.W is 1, the operand size
is 64-bit; if XOP.W is 0, the operand size is 32-bit. In 32-bit mode, XOP.W is ignored. 16-bit operands
are not supported.

The destination (dest) is a general purpose register.
The source operand (SrC) is a general purpose register or a memory operand.

The BLSIC instruction effectively performs a bit-wise logical or of the inverse of the source operand
and the result of subtracting 1 from the source operand, and stores the result to the destination register:

sub tnmpl, src, 1
not tnp2, src
or dest, tnpl, tnp2

The value of the carry flag of rTFLAGS is generated by the Sub pseudo-instruction and the remaining
arithmetic flags are generated by the or pseudo-instruction.

The BLSR instruction is a TBM instruction. Support for this instruction is indicated by CPUID
Fn8000 0001 ECX[TBM]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
BLSIC reg32, reg/mem32 8F RXB.09 0.dest.0.00 01/6
BLSIC reg64, reg/mem64 8F RXB.09 1.dest.0.00 01/6

Related Instructions

ANDN, BEXTR, BLCFILL, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR,
BLSMSK, BSF, BSR, LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLSIC 105
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

Exception

Real

Virtual

8086 [Protected

Cause of Exception

TBM instructions are only recognized in protected mode.

TBM instructions are not supported, as indicated by

Invalid opcode, #UD X | CPUID Fn8000_0001_ECX[TBM] = 0.
XOP.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #58 was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

106

BLSIC General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLSMSK Mask From Lowest Set Bit

Forms a mask with bits set to 1 from bit 0 up to and including the least significant bit position that is set
to 1 in the source operand and writes the mask to the destination. If the value of the source operand is
zero, the destination is written with all ones.

This instruction has two operands:
BLSMSK dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.

The source operand (SrC) is either a general purpose register or a memory operand and the destination
operand (dest) is a general purpose register.

This instruction implements the operation:

sub tnp, srcl, 1
xor dst, tnp, srcl

The value of the carry flag is generated by the Sub pseudo-instruction and the remaining status flags
are generated by the Xor pseudo-instruction.

If the input is zero, the output is a value with all bits set to 1. If this is considered a corner case input,
software may test the carry flag to detect the zero input value.

The BLSMSK instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
BLSMSK reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3/2
BLSMSK reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3/2

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSR, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLSMSK 107
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI instructions are only recognized in protected mode.
. BMI instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007 EBX_xO[BMI] = 0.
X VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #5S was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

108

B

LSMSK General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BLSR Reset Lowest Set Bit

Clears the least-significant bit that is set to 1 in the input operand and writes the modified operand to
the destination.

This instruction has two operands:
BLSR dest, src

In 64-bit mode, the operand size is determined by the value of VEX.W. If VEX.W is 1, the operand
size is 64-bit; if VEX.W is 0, the operand size is 32-bit. In 32-bit mode, VEX.W is ignored. 16-bit
operands are not supported.

The destination (dest) is always a general purpose register.
The source operand (SrC) is either a general purpose register or a memory operand.

This instruction implements the operation:

sub tnp, srcl, 1
and dst, tnp, srcl

The value of the carry flag is generated by the sub pseudo-instruction and the remaining status flags
are generated by the and pseudo-instruction.

The BLSR instruction is a BMI1 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 _EBX x0[BMI1]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
BLSR reg32, reg/mem32 C4 RXB.02 0.dest.0.00 F3/1
BLSR reg64, reg/mem64 C4 RXB.02 1.dest.0.00 F3/1

Related Instructions

ANDN, BEXTR, BLCI, BLCIC, BLCMSK, BLCS, BLSFILL, BLSI, BLSIC, BLSMSK, BSF, BSR,
LZCNT, POPCNT, TIMSKC, TZCNT, TZMSK

General-Purpose BLSR 109
Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI instructions are only recognized in protected mode.
. BMI instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007 EBX_xO[BMI] = 0.
X VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #5S was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

110

BLSR General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BOUND Check Array Bound

Checks whether an array index (first operand) is within the bounds of an array (second operand). The
array index is a signed integer in the specified register. If the operand-size attribute is 16, the array
operand is a memory location containing a pair of signed word-integers; if the operand-size attribute is
32, the array operand is a pair of signed doubleword-integers. The first word or doubleword specifies
the lower bound of the array and the second word or doubleword specifies the upper bound.

The array index must be greater than or equal to the lower bound and less than or equal to the upper
bound. If the index is not within the specified bounds, the processor generates a BOUND range-
exceeded exception (#BR).

The bounds of an array, consisting of two words or doublewords containing the lower and upper limits
of the array, usually reside in a data structure just before the array itself, making the limits addressable
through a constant offset from the beginning of the array. With the address of the array in a register,
this practice reduces the number of bus cycles required to determine the effective address of the array
bounds.

Using this instruction in 64-bit mode generates an invalid-opcode exception.

Mnemonic Opcode Description

Test whether a 16-bit array index is within the bounds
BOUND regl16, mem16&meml6 62 /r specified by the two 16-bit values in mem16&mem16.
(Invalid in 64-bit mode.)

Test whether a 32-bit array index is within the bounds
BOUND reg32, mem32&mem32 62 /r specified by the two 32-bit values in mem32&mem32.
(Invalid in 64-bit mode.)

Related Instructions

INT, INT3, INTO

rFLAGS Affected
None
Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
Bound range, #BR X X X The bound range was exceeded.
Invalid opcode, X X X The source operand was a register.
#UD X Instruction was executed in 64-bit mode.
Stack, #SS X X X A memory address exceeded the stack segment limit
General protection, | X X X A memory address exceeded a data segment limit.
#GP X A null data segment was used to reference memory.
General-Purpose BOUND 111

Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Virtual | Protecte
Exception Real| 8086 d Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
112 BOUND General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BSF Bit Scan Forward

Searches the value in a register or a memory location (second operand) for the least-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the least-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Mnemonic Opcode Description
BSF regl6, reg/mem16 OF BC/r Bit scan forward on the contents of reg/mem16.
BSF reg32, reg/mem32 OF BC/r Bit scan forward on the contents of reg/mem32.
BSF reg64, reg/mem64 OF BC/r Bit scan forward on the contents of reg/mem64

Related Instructions

BSR

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

u u M u U u

21 120 |19 | 18 | 17 | 16 | 14 13:12 1110 | 9 8 7 6 4 2 0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was

Stack, #5S X X X non-canonical.

. X X X A memory address exceeded a data segment limit or was non-
General protection, canonicai.
#GP

X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.

Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.
General-Purpose BSF 113

Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

BSR Bit Scan Reverse

Searches the value in a register or a memory location (second operand) for the most-significant set bit.
If a set bit is found, the instruction clears the zero flag (ZF) and stores the index of the most-significant
set bit in a destination register (first operand). If the second operand contains 0, the instruction sets ZF
to 1 and does not change the contents of the destination register. The bit index is an unsigned offset
from bit 0 of the searched value.

Mnemonic Opcode Description
BSR regl6, reg/mem16 OF BD /r Bit scan reverse on the contents of reg/mem16.
BSR reg32, reg/mem32 OF BD /r Bit scan reverse on the contents of reg/mem32.
BSR reg64, reg/mem64 OF BD /r Bit scan reverse on the contents of reg/mem64.

Related Instructions

BSF

rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

U U M U u U
21 | 20 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #SS X X X non-canonical.
. X X X A memory address exceeded the data segment limit or was

General protection, non-canonical.

#GP

X A null data segment was used to reference memory.

Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while

#AC alignment checking was enabled.

114 BSR General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

BSWAP Byte Swap

Reverses the byte order of the specified register. This action converts the contents of the register from
little endian to big endian or vice versa. In a doubleword, bits 7:0 are exchanged with bits 31:24, and
bits 15:8 are exchanged with bits 23:16. In a quadword, bits 7:0 are exchanged with bits 63:56, bits
15:8 with bits 55:48, bits 23:16 with bits 47:40, and bits 31:24 with bits 39:32. A subsequent use of the
BSWAP instruction with the same operand restores the original value of the operand.

The result of applying the BSWAP instruction to a 16-bit register is undefined. To swap the bytes of a
16-bit register, use the XCHG instruction and specify the respective byte halves of the 16-bit register
as the two operands. For example, to swap the bytes of AX, use XCHG AL, AH.

Mnemonic Opcode Description
BSWAP reg32 OF C8 +rd Reverse the byte order of reg32.
BSWAP reg64 OF C8 +rq Reverse the byte order of reg64.

Related Instructions

XCHG

rFLAGS Affected

None

Exceptions

None

General-Purpose BSWAP 115
Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

BT Bit Test

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range 20316 +203 _ [if the operand size is 64, 231404231 1, if the operand size is 32, and
25 to +215 — 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on operand size.

When the instruction attempts to copy a bit from memory, it accesses 2, 4, or 8 bytes starting from the
specified memory address for 16-bit, 32-bit, or 64-bit operand sizes, respectively, using the following
formula:

Effective Address + (NumBytes; * (BitOffset DIV NumBits;«g))

When using this bit addressing mechanism, avoid referencing areas of memory close to address space
holes, such as references to memory-mapped I/O registers. Instead, use a MOV instruction to load a
register from such an address and use a register form of the BT instruction to manipulate the data.

Mnemonic Opcode Description
BT reg/mem16, regl6 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem32, reg32 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem64, reg64 OF A3 /r Copy the value of the selected bit to the carry flag.
BT reg/mem16, imm8 OF BA/4ib Copy the value of the selected bit to the carry flag.
BT reg/mem32, imm8 OF BA/4ib Copy the value of the selected bit to the carry flag.
BT reg/mem64, imm8 OF BA /4 ib Copy the value of the selected bit to the carry flag.

Related Instructions

BTC, BTR, BTS

116 BT General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
u Ul U]|]U]|U]/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #SS X X non-canonical.
. X X A memory address exceeded a data segment limit or was non-
General protection, canonical.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

BT 117

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

BTC Bit Test and Complement

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
complements (toggles) the bit in the bit string.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range 263 10 +293 _ 1 if the operand size is 64, 23140 +231 — 1, if the operand size is 32, and
23 t0 +215 — 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such an
application should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Mnemonic Opcode Description

Copy the value of the selected bit to the carry flag, then

BTC reg/mem16, regl6 OF BB /r complement the selected bit.

OF BB /r Copy the value of the selected bit to the carry flag, then

BTC reg/mem32, reg32 complement the selected bit.

OF BB /r Copy the value of the selected bit to the carry flag, then

BTC reg/mem64, reg64 complement the selected bit.

OF BA /7 ib Copy the value of the selected bit to the carry flag, then

BTC reg/mem16, imm8 complement the selected bit.

OF BA /7 ib Copy the value of the selected bit to the carry flag, then

BTC reg/mem32, imm8 complement the selected bit.

OF BA /7 ib Copy the value of the selected bit to the carry flag, then

BTC reg/mem64, imm8 complement the selected bit.

Related Instructions

BT, BTR, BTS

118 BTC General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
u Ul U]|]U]|U]/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X ;
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

BTC 119

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

BTR Bit Test and Reset

Copies a bit, specified by a bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
clears the bit in the bit string to 0.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range 263 10 +293 _ 1 if the operand size is 64, 23140 +231 — 1, if the operand size is 32, and
23 t0 +215 — 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Mnemonic Opcode Description

Copy the value of the selected bit to the carry flag, then

BTR reg/mem16, reg16 OF B3 /r clear the selected bit.
Copy the value of the selected bit to the carry flag, then
BTR reg/mem32, reg32 OF B3 /r clear the selected bit.

OF B3 Ir Copy the value of the selected bit to the carry flag, then

BTR reg/memé4, reg64 clear the selected bit.

OF BA /6 ib Copy the value of the selected bit to the carry flag, then

BTR reg/mem16, imm8 clear the selected bit.

OF BA /6 ib Copy the value of the selected bit to the carry flag, then

BTR reg/mem32, imm8 clear the selected bit.

OF BA /6 ib Copy the value of the selected bit to the carry flag, then

BTR reg/memé&4, imm8 clear the selected bit.

Related Instructions

BT, BTC, BTS

120 BTR General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
u Ul U]|]U]|U]/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X ;
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

BTR 121

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

BTS Bit Test and Set

Copies a bit, specified by bit index in a register or 8-bit immediate value (second operand), from a bit
string (first operand), also called the bit base, to the carry flag (CF) of the rFLAGS register, and then
sets the bit in the bit string to 1.

If the bit base operand is a register, the instruction uses the modulo 16, 32, or 64 (depending on the
operand size) of the bit index to select a bit in the register.

If the bit base operand is a memory location, bit 0 of the byte at the specified address is the bit base of
the bit string. If the bit index is in a register, the instruction selects a bit position relative to the bit base
in the range 263 10 +293 _ 1 if the operand size is 64, 23140 +231 — 1, if the operand size is 32, and
23 t0 +215 — 1 if the operand size is 16. If the bit index is in an immediate value, the bit selected is
that value modulo 16, 32, or 64, depending on the operand size.

This instruction is useful for implementing semaphores in concurrent operating systems. Such
applications should precede this instruction with the LOCK prefix. For details about the LOCK prefix,
see “Lock Prefix” on page 11.

Mnemonic Opcode Description

Copy the value of the selected bit to the carry flag, then

BTS reg/mem16, regl6 OF AB /r set the selected bit.
Copy the value of the selected bit to the carry flag, then
BTS reg/mem32, reg32 OF AB /Ir set the selected bit.

Copy the value of the selected bit to the carry flag, then

BTS reg/mem64, reg64 OF AB /r set the selected bit.

OF BA /5 ib Copy the value of the selected bit to the carry flag, then

BTS reg/mem16, imm8 set the selected bit.

OF BA /5 ib Copy the value of the selected bit to the carry flag, then

BTS reg/mem32, imm8 set the selected bit.

Copy the value of the selected bit to the carry flag, then

BTS reg/mem64, imm8 OF BA/5ib set the selected bit.

Related Instructions

BT, BTC, BTR

122 BTS General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
u Ul U]|]U]|U]/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception

A memory address exceeded the stack segment limit or was

Stack, #5S X X non-canonical.
A memory address exceeded a data segment limit or was non-

X X ;
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

BTS 123

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

BZHI Zero High Bits

Copies bits, left to right, from the first source operand starting with the bit position specified by the
second source operand (index), writes these bits to the destination, and clears all the bits in positions
greater than index.

This instruction has three operands:
BZHI dest, src, index
In 64-bit mode, the operand size (0p_size) is determined by the value of VEX.W. If VEX.W is 1, the

operand size is 64 bits; if VEX.W is 0, the operand size is 32 bits. In 32-bit mode, VEX.W is ignored.
16-bit operands are not supported.

The destination (dest) is a general purpose register. The first source operand (src) is either a general
purpose register or a memory operand. The second source operand is a general purpose register. Bits
[7:0] of this register, treated as an unsigned 8-bit integer, specify the index of the most-significant bit
of the first source operand to be copied to the corresponding bit of the destination. Bits [op_Size-
1:index+1] of the destination are cleared.

If the value of index is greater than or equal to the operand size, index is set to (Op_size-1). In this case,
the CF flag is set.

This instruction is a BMI2 instruction. Support for this instruction is indicated by CPUID
Fn0000 0007 EBX x0[BMI2]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
BZHI reg32, reg/mem32, reg32 C4 RXB.02 0.index.0.00 F5/r
BZHI reg64, reg/mem64, reg64 C4 RXB.02 1.index.0.00 F5/r

Related Instructions

124 BZHI General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
0 M| M| U/|U/|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 210

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 |Protected
X X BMI2 instructions are only recognized in protected mode.
. BMI2 instructions are not supported, as indicated by
Invalid opcode, #UD X | CPUID Fn0000_0007_EBX_xO[BMI2] = 0.
X VEX.Lis 1.
A memory address exceeded the stack segment limit or
Stack, #5S was non-canonical.
X A memory address exceeded a data segment limit or was
General protection, #GP non-canonical.
X A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the instruction.
; An unaligned memory reference was performed while
Alignment check, #AC X alignment checking was enabled.

General-Purpose
Instruction Reference

BZHI 125

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

CALL (Near) Near Procedure Call

Pushes the offset of the next instruction onto the stack and branches to the target address, which
contains the first instruction of the called procedure. The target operand can specify a register, a
memory location, or a label. A procedure accessed by a near CALL is located in the same code
segment as the CALL instruction.

If the CALL target is specified by a register or memory location, then a 16-, 32-, or 64-bit rIP is read
from the operand, depending on the operand size. A 16- or 32-bit rIP is zero-extended to 64 bits.

If the CALL target is specified by a displacement, the signed displacement is added to the rIP (of the
following instruction), and the result is truncated to 16, 32, or 64 bits, depending on the operand size.
The signed displacement is 16 or 32 bits, depending on the operand size.

In all cases, the rIP of the instruction after the CALL is pushed on the stack, and the size of the stack
push (16, 32, or 64 bits) depends on the operand size of the CALL instruction.

For near calls in 64-bit mode, the operand size defaults to 64 bits. The E8 opcode results in
RIP = RIP + 32-bit signed displacement and the FF /2 opcode results in RIP = 64-bit offset from
register or memory. No prefix is available to encode a 32-bit operand size in 64-bit mode.

At the end of the called procedure, RET is used to return control to the instruction following the
original CALL. When RET is executed, the rIP is popped off the stack, which returns control to the
instruction after the CALL.

See CALL (Far) for information on far calls—calls to procedures located outside of the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

Mnemonic Opcode Description

CALL rel160ff E8 iw Sli(:glra%%l:nv\éirtw? the target specified by a 16-bit relative
CALL rel320ff ES id ld\lizg[a%aellnvgrt]? the target specified by a 32-bit relative
CALL reg/mem16 FF /2 Near call with the target specified by reg/mem16.

CALL reg/mem32 FE /2 Near call with the target specified by reg/mem32. (There

is no prefix for encoding this in 64-bit mode.)

CALL reg/mem64 FF /2 Near call with the target specified by reg/mem64.

For details about control-flow instructions, see “Control Transfers” in Volume 1, and “Control-
Transfer Privilege Checks” in Volume 2.

Related Instructions

CALL(Far), RET(Near), RET(Far)

126 CALL (Near) General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected
None.
Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical.
X X X A memory address exceeded a data segment limit or was non-
canonical.
General protection P
’ The target offset exceeded the code segment limit or was non-
#GP X X X canonical.
X A null data segment was used to reference memory.
Alignment Check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
Page Fault, #PF X X A page fault resulted from the execution of the instruction.

General-Purpose
Instruction Reference

CALL (Near) 127

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

CALL (Far) Far Procedure Call

Pushes procedure linking information onto the stack and branches to the target address, which contains
the first instruction of the called procedure. The operand specifies a target selector and offset.

The instruction can specify the target directly, by including the far pointer in the immediate and
displacement fields of the instruction, or indirectly, by referencing a far pointer in memory. In 64-bit
mode, only indirect far calls are allowed; executing a direct far call (opcode 9A) generates an
undefined opcode exception. For both direct and indirect far calls, if the CALL (Far) operand-size is
16 bits, the instruction's operand is a 16-bit offset followed by a 16-bit selector. If the operand-size is
32 or 64 bits, the operand is a 32-bit offset followed by a 16-bit selector.

The target selector used by the instruction can be a code selector in all modes. Additionally, the target
selector can reference a call gate in protected mode, or a task gate or TSS selector in legacy protected
mode.

» Targetisacode selector—The CS:rIP of the next instruction is pushed to the stack, using operand-
size stack pushes. Then code is executed from the target CS:rIP. In this case, the target offset can
only be a 16- or 32-bit value, depending on operand-size, and is zero-extended to 64 bits. No CPL
change is allowed.

» Targetisa call gate—The call gate specifies the actual target code segment and offset. Call gates
allow calls to the same or more privileged code. If the target segment is at the same CPL as the
current code segment, the CS:rIP of the next instruction is pushed to the stack.

If the CALL (Far) changes privilege level, then a stack-switch occurs, using an inner-level stack
pointer from the TSS. The CS:rIP of the next instruction is pushed to the new stack. If the mode is
legacy mode and the param-count field in the call gate is non-zero, then up to 31 operands are
copied from the caller's stack to the new stack. Finally, the caller's SS:rSP is pushed to the new
stack.

When calling through a call gate, the stack pushes are 16-, 32-, or 64-bits, depending on the size of
the call gate. The size of the target rIP is also 16, 32, or 64 bits, depending on the size of the call
gate. If the target rIP is less than 64 bits, it is zero-extended to 64 bits. Long mode only allows 64-
bit call gates that must point to 64-bit code segments.

» Target isatask gate or a TSS—If the mode is legacy protected mode, then a task switch occurs.
See “Hardware Task-Management in Legacy Mode” in volume 2 for details about task switches.
Hardware task switches are not supported in long mode.

See CALL (Near) for information on near calls—calls to procedures located inside the current code
segment. For details about control-flow instructions, see “Control Transfers” in Volume 1, and
“Control-Transfer Privilege Checks” in Volume 2.

128 CALL (Far) General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
Mnemonic Opcode Description
) Far call direct, with the target specified by a far pointer
CALL FAR pntr16:16 9Acd contained in the instruction. (Invalid in 64-bit mode.)
. Far call direct, with the target specified by a far pointer
CALL FAR pntr16:32 9A cp contained in the instruction. (Invalid in 64-bit mode.)
CALL FAR mem16:16 FF /3 iFnarrn%ilwlérr]yireCt’ with the target specified by a far pointer
CALL FAR mem16:32 FE /3 iI;artn((:aerlrll(i)r;)(/jirect, with the target specified by a far pointer
Action

/1 See “Pseudocode Definition” on page 57.
CALLF_START:

| F (REAL_MODE)
CALLF_REAL_OR_VI RTUAL

ELSI F (PROTECTED MODE)
CALLF_PROTECTED

ELSE // (VI RTUAL_MODE)
CALLF_REAL_OR_VI RTUAL

CALLF_REAL_OR VI RTUAL:

| F (OPCCDE == cal If [nen) /1 CALLF Indirect

{

tenp_RI P READ MEM z [meni

tenp_CS READ MEM w [menmt+Z]
}
ELSE // (OPCODE == callf direct)
{
tenp_ RIP = z-sized offset specified in the instruction
zero-extended to 64 bits
tenp_CS = selector specified in the instruction
}

PUSH. v ol d_CS
PUSH. v next _RIP

IF (temp_RIP>CS. |imt)
EXCEPTI ON [#GP(0)]

CS.sel = tenp_Cs
CS. base = tenp_CS SHL 4
RIP=temp RP
EXIT
General-Purpose CALL (Far) 129

Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

CALLF_PROTECTED

| F (OPCCODE == cal If [nen) /1 CALLF I ndirect
{
tenp_offset = READ MEM z [nen
t enp_sel = READ_MEM w [nemt+Z]
}
ELSE // (OPCODE == cal lf direct)
{

| F (64Bl T_MODE)
EXCEPTI ON [#UD| /1 ' CALLF direct’ is illegal in 64-bit node.
tenp_offset = z-sized offset specified in the instruction
zero-extended to 64 bits
tenp_sel = selector specified in the instruction

}

tenp_desc = READ DESCRI PTOR (tenp_sel, cs_chk)

IF (tenp_desc.attr.type == "avail able_tss’)
TASK _SW TCH /1 Using tenp_sel as the target TSS sel ector
ELSIF (tenp_desc.attr.type == 'taskgate’')

TASK _SW TCH /1 Using the TSS selector in the task gate
/1l as the target TSS.
ELSIF (tenp_desc.attr.type == 'code’)
/1 1f the selector refers to a code descriptor, then
/1l the offset we read is the target RIP

{
tenp_RI P = tenp_offset
CS = tenp_desc
PUSH. v ol d_CS
PUSH. v next _RIP
IF (('64BIT_MODE) && (tenmp_RIP > CS.linit))
/1 tenp_RIP can’t be non-canoni cal because
EXCEPTI ON [#GP(0)] /1 it’'s a 16- or 32-bit offset, zero-
ext ended
/[l to 64 bits.
RIP = tenp_RIP
EXIT
ELSE // (tenp_desc.attr.type == 'callgate’)
/1 1f the selector refers to a call gate, then
/1l the target CS and RIP both cone fromthe call gate.
{
| F (LONG_MODE)
/1 The size of the gate controls the size of the stack
pushes.
V=8- byt e
/1 Long node only uses 64-bit call gates, force 8-byte
opsi ze.
ELSIF (tenp_desc.attr.type == 'cal | gate32')
V=4- byt e
130 CALL (Far) General-Purpose

Instruction Reference

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology

opsi ze.

opsi ze.

upper

tenp_ist)

/'l Legacy node, using a 32-bit call-gate, force 4-byte

ELSE /'l (tenp_desc.attr.type == ’callgatel6’)
V=2- byt e
/'l Legacy node, using a 16-bit call-gate, force 2-byte

tenp_RI P = tenp_desc. of f set

| F (LONG_MODE) /1 In long node, we need to read the 2nd half of a
/1 16-byte call-gate fromthe GDT/LDT, to get the

/1 32 bits of the target RIP.

tenp_upper = READ MEM q [tenp_sel +8]
| F (tenmp_upper’s extended attribute bits != 0)
EXCEPTI ON [#GP(tenp_sel)]
tenp_RIP = tenpRIP + (tenp_upper SHL 32)
/1 Concatenate both halves of RIP

}

CS = READ DESCRI PTOR (tenp_desc. segnent, clg_chk)

I F (CS. attr.conform ng==1)
tenp_CPL = CPL

ELSE
tenp_CPL = CS. attr. dpl

| F (CPL==t enp_CPL)

{
PUSH. v ol d_CS
PUSH. v next _RIP

IF ((64BI T_MODE) && (temp _RIP i s non-canonical)
[| ('64BIT_MODE) && (tenp_RIP > CS.linmit))
{

}

RIP = tenp_RIP
EXIT

EXCEPTI ON[#GP(0)]

}

ELSE // (CPL != tenp_CPL), Changing privilege |evel.

{
CPL = tenp_CPL
tenp_ist =0 /1 Call-far doesn't use ist pointers.
tenp_SS desc: tenp_RSP = READ | NNER_LEVEL_STACK PO NTER (CPL,

RSP. q = tenp_RSP
SS = tenp_SS desc

General-Purpose CALL (Far) 131
Instruction Reference

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017

PUSH. v ol d_SS /1 #SS on this and foll owi ng pushes use
/1 SS.sel as error code.
PUSH. v ol d_RSP
| F (LEGACY_MODE) /1 Legacy-node call gates have
{ /1 a param count field.
t enp_PARAM COUNT = tenp_desc. attr. param count

FOR (I =tenp_PARAM COUNT; 1>0; 1--)
{
tenp_DATA = READ MEM v [ol d_SS: (ol d_RSP+l *V)]
PUSH. v t enp_DATA
}
}
PUSH. v ol d_CS
PUSH. v next _RI P

IF ((64BI T_MODE) && (temp _RIP is non-canonical)
|| (!'64BIT_MODE) &% (tenmp RIP > CS.linit))

{
EXCEPTI ON [#GP(0)]
}
RIP=tenp RP
EXIT

Related Instructions

CALL (Near), RET (Near), RET (Far)

rFLAGS Affected

None, unless a task switch occurs, in which case all flags are modified.

132

CALL (Far) General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
Invalid opcode, X X X The far CALL indirect opcode (FF /3) had a register operand.
#UD X The far CALL direct opcode (9A) was executed in 64-bit mode.
X As part of a stack switch, the target stack segment selector or
rSP in the TSS was beyond the TSS limit.
X As part of a stack switch, the target stack segment selector in
the TSS was a null selector.
X As part of a stack switch, the target stack selector’s Tl bit was
set, but LDT selector was a null selector.
As part of a stack switch, the target stack segment selector in
Invalid TSS, #TS X the TSS was beyond the limit of the GDT or LDT descriptor
(selector) table.
X As part of a stack switch, the target stack segment selector in
the TSS contained a RPL that was not equal to its DPL.
As part of a stack switch, the target stack segment selector in
X the TSS contained a DPL that was not equal to the CPL of the
code segment selector.
X As part of a stack switch, the target stack segment selector in
the TSS was not a writable segment.
Sfe%rgﬁtnt#?\loé X The accessed code segment, call gate, task gate, or TSS was
(selectdr) not present.
A memory address exceeded the stack segment limit or was
Stack, #5S X X X non-canonical, and no stack switch occurred.
X After a stack switch, a memory access exceeded the stack
Stack. #SS segment limit or was non-canonical.
ack, . ; :
(selector) As part of a stack switch, the SS register was loaded with a
X non-null segment selector and the segment was marked not
present.
X X X A memory address exceeded a data segment limit or was non-
canonical.
gggeral protection, X X The target offset exceeded the code segment limit or was non-

canonical.

A null data segment was used to reference memory.

General-Purpose

Instruction Reference

CALL (Far) 133

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Exception

Real

Virtual
8086

Protecte
d

Cause of Exception

General protection,
#GP
(selector)

X

The target code segment selector was a null selector.

X

A code, call gate, task gate, or TSS descriptor exceeded the
descriptor table limit.

A segment selector’s Tl bit was set but the LDT selector was a
null selector.

The segment descriptor specified by the instruction was not a
code segment, task gate, call gate or available TSS in legacy
mode, or not a 64-bit code segment or a 64-bit call gate in long
mode.

The RPL of the non-conforming code segment selector
specified by the instruction was greater than the CPL, or its
DPL was not equal to the CPL.

The DPL of the conforming code segment descriptor specified
by the instruction was greater than the CPL.

The DPL of the callgate, taskgate, or TSS descriptor specified
by the instruction was less than the CPL, or less than its own
RPL.

The segment selector specified by the call gate or task gate
was a null selector.

The segment descriptor specified by the call gate was not a
code segment in legacy mode, or not a 64-bit code segment in
long mode.

The DPL of the segment descriptor specified by the call gate
was greater than the CPL.

The 64-bit call gate’s extended attribute bits were not zero.

The TSS descriptor was found in the LDT.

Page fault, #PF

A page fault resulted from the execution of the instruction.

Alignment check,
#AC

X | X|X|X| X

An unaligned memory reference was performed while
alignment checking was enabled.

134

CALL (Far) General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017 AMDG64 Technology
CBW Convert to Sign-Extended
CWDE
CDQE

Copies the sign bit in the AL or eAX register to the upper bits of the rAX register. The effect of this
instruction is to convert a signed byte, word, or doubleword in the AL or eAX register into a signed
word, doubleword, or quadword in the rAX register. This action helps avoid overflow problems in
signed number arithmetic.

The CDQE mnemonic is meaningful only in 64-bit mode.

Mnemonic Opcode Description
cBwW 98 Sign-extend AL into AX.
CWDE 98 Sign-extend AX into EAX.
CDQE 98 Sign-extend EAX into RAX.

Related Instructions
CWD, CDQ, CQO
rFLAGS Affected

None

Exceptions

None

General-Purpose CBW, CWDE, CDQE 135
Instruction Reference

AMDAQ

AMDG64 Technology

CWD
cDQ
CQo

24594—Rev. 3.25—December 2017

Convert to Sign-Extended

Copies the sign bit in the rAX register to all bits of the rDX register. The effect of this instruction is to
convert a signed word, doubleword, or quadword in the rAX register into a signed doubleword,
quadword, or double-quadword in the rDX:rAX registers. This action helps avoid overflow problems

in signed number arithmetic.

The CQO mnemonic is meaningful only in 64-bit mode.

Mnemonic
CWD 99
CDQ 99
CQO 99

Related Instructions

CBW, CWDE, CDQE

rFLAGS Affected

None

Exceptions

None

Opcode

Description
Sign-extend AX into DX:AX.

Sign-extend EAX into EDX:EAX.

Sign-extend RAX into RDX:RAX.

136

CWD, CDQ, CQO

General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

CLC Clear Carry Flag
Clears the carry flag (CF) in the rFLAGS register to zero.

Mnemonic Opcode Description

CLC F8 Clear the carry flag (CF) to zero.

Related Instructions
STC, CMC

rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0

21 120 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

None

General-Purpose CLC 137
Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

CLD Clear Direction Flag

Clears the direction flag (DF) in the rFLAGS register to zero. If the DF flag is 0, each iteration of a
string instruction increments the data pointer (index registers rSI or rDI). If the DF flag is 1, the string
instruction decrements the pointer. Use the CLD instruction before a string instruction to make the
data pointer increment.

Mnemonic Opcode Description
CLD FC Clear the direction flag (DF) to zero.
Related Instructions

CMPSx, INSx, LODSx, MOV Sx, OUTSx, SCASx, STD, STOSx

rFLAGS Affected

ID | VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
0

21 120 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

None

138 CLD General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

CLFLUSH Cache Line Flush

Flushes the cache line specified by the mem8 linear-address. The instruction checks all levels of the
cache hierarchy—internal caches and external caches—and invalidates the cache line in every cache
in which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor’s write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSH instruction.

The CLFLUSH instruction is weakly-ordered with respect to other instructions that operate on
memory. Speculative loads initiated by the processor, or specified explicitly using cache-prefetch
instructions, can be reordered around a CLFLUSH instruction. Such reordering can invalidate a
speculatively prefetched cache line, unintentionally defeating the prefetch operation. The only way to
avoid this situation is to use the MFENCE instruction after the CLFLUSH instruction to force strong-
ordering of the CLFLUSH instruction with respect to subsequent memory operations. The CLFLUSH
instruction may also take effect on a cache line while stores from previous store instructions are still
pending in the store buffer. To ensure that such stores are included in the cache line that is flushed, use
an MFENCE instruction ahead of the CLFLUSH instruction. Such stores would otherwise cause the
line to be re-cached and modified after the CLFLUSH completed. The LFENCE, SFENCE, and
serializing instructions are not ordered with respect to CLFLUSH.

The CLFLUSH instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSH instruction executes at any privilege level. CLFLUSH performs all the segmentation
and paging checks that a 1-byte read would perform, except that it also allows references to execute-
only segments.

The CLFLUSH instruction is supported if the feature flag CPUID Fn0000 0001 EDX[CLFSH] is set.
The 8-bit field CPUID Fn 0000 0001 EBX[CLFlush] returns the size of the cacheline in quadwords.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Opcode Description
CLFLUSH mem8 OF AE /7 flush cache line containing mem8.
General-Purpose CLFLUSH 139

Instruction Reference

AMDAQ

AMDG64 Technology

Related Instructions

INVD, WBINVD, CLFLUSHOPT, CLZERO

24594—Rev. 3.25—December 2017

rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
: CLFLUSH instruction is not supported, as indicated by
Invalid opcode, #UD | X X X | CPUID Fn0000_0001_EDX[CLFSH] = 0.
A memory address exceeded the stack segment limit
Stack, #5S X X X or was non-canonical.
i X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the

instruction.

140

CLFLUSH General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

CLFLUSHOPT Optimized Cache Line Flush

Flushes the cache line specified by the memS§ linear-address. The instruction checks all levels of the
cache hierarchy-internal caches and external caches-and invalidates the cache line in every cache in
which it is found. If a cache contains a dirty copy of the cache line (that is, the cache line is in the
modified or owned MOESI state), the line is written back to memory before it is invalidated. The
instruction sets the cache-line MOESI state to invalid.

The instruction also checks the physical address corresponding to the linear-address operand against
the processor's write-combining buffers. If the write-combining buffer holds data intended for that
physical address, the instruction writes the entire contents of the buffer to memory. This occurs even
though the data is not cached in the cache hierarchy. In a multiprocessor system, the instruction checks
the write-combining buffers only on the processor that executed the CLFLUSHOPT instruction.

The CLFLUSHOPT instruction is ordered with respect to fence instructions and locked operations.
CLFLUSHORPT is also ordered with writes, CLFLUSH, and CLFLUSHOPT instructions that
reference the same cache line as the CLFLUSHOPT. CLFLUSHOPT is not ordered with writes,
CLFLUSH, and CLFLUSHOPT to other cache lines. To enforce ordering in that situation, a SFENCE
instruction or stronger should be used.

Speculative loads initiated by the processor, or specified explicitly using cache-prefetch instructions,
can be reordered around a CLFLUSHOPT instruction. Such reordering can invalidate a speculatively
prefetched cache line, unintentionally defeating the prefetch operation.

The only way to avoid this situation is to use the MFENCE instruction after the CLFLUSHOPT
instruction to force strong ordering of the CLFLUSHOPT instruction with respect to subsequent
memory operations.

The CLFLUSHOPT instruction behaves like a load instruction with respect to setting the page-table
accessed and dirty bits. That is, it sets the page-table accessed bit to 1, but does not set the page-table
dirty bit.

The CLFLUSHOPT instruction executes at any privilege level. CLFLUSHOPT performs all the
segmentation and paging checks that a 1-byte read would perform, except that it also allows references
to execute-only segments.

The CLFLUSHOPT instruction 1is supported if the feature flag CPUID
Fn0000 0007 EBX xO[CLFSHOPT]is set. The 8-bit field CPUID Fn 0000_0001 EBX[CLFlush]
returns the size of the cacheline in quadwords.

Mnemonic Opcode Description
CLFLUSHOPT mem8 66 OF AE /7 Flush cache line containing mem8
General-Purpose CLFLUSH 141

Instruction Reference

AMDAQ

AMDG64 Technology

Related Instructions

24594—Rev. 3.25—December 2017

CLFLUSH
rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
X X X CLFLUSH instruction is not supported, as indicated by
. CPUID Fn0000_0001_EDX[CLFSH] = 0.
Invalid opcode, #UD -
X X X Instruction not supported by CPUID
Fn0000_0007_EBX_xO[CLFLUSHOPT] =0
A memory address exceeded the stack segment limit
Stack, #58 X X X or was non-canonical.
i X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
A null data segment was used to reference memory.
Page fault, #PF X A page fault resulted from the execution of the

instruction.

142

CLFLUSH General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

CLZERO Zero Cache Line

Clears the cache line specified by the logical address in rAX by writing a zero to every byte in the line.
The instruction uses an implied non temporal memory type, similar to a streaming store, and uses the
write combining protocol to minimize cache pollution.

CLZERO is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or stronger to enforce memory ordering of CLZERO with respect to other
store instructions.

The CLZERO instruction executes at any privilege level. CLZERO performs all the segmentation and
paging checks that a store of the specified cache line would perform.

The CLZERO instruction is supported if the feature flag CPUID Fn8000 0008 EBX[CLZERO] is
set. The 8-bit field CPUID Fn 0000 0001 EBX[CLFlush] returns the size of the cacheline in
quadwords.

Mnemonic Opcode Description

CLZERO rAX OF 01 FC Clears cache line containing rAX

Related Instructions

CLFLUSH
rFLAGS Affected
None
Exceptions
Virtual
Exception (vector) | Real | 8086 |Protected Cause of Exception
; Instruction not supported by CPUID
Invalid opcode, #UD | X X X | Fng000_0008_EBX[CLZERO] = 0
A memory address exceeded the stack segment limit
Stack, #3S X X X or was non-canonical.
i X X X A memory address exceeded a data segment limit or
General protection, was non-canonical.
#GP
A null data segment was used to reference memory.
A page fault resulted from the execution of the
Page fault, #PF X X instruction.
General-Purpose CLFLUSH 143

Instruction Reference

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

CMC Complement Carry Flag
Complements (toggles) the carry flag (CF) bit of the rTFLAGS register.
Mnemonic Opcode Description
CMC F5 Complement the carry flag (CF).
Related Instructions
CLC, STC
rFLAGS Affected
ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF
M
21 120 | 19 | 18 | 17 | 16 | 14 13:12 11 10 9 8 7 6 4 2 0
Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions

None

144

CMC

General-Purpose
Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

CMOVcc Conditional Move

Conditionally moves a 16-bit, 32-bit, or 64-bit value in memory or a general-purpose register (second
operand) into a register (first operand), depending upon the settings of condition flags in the rTFLAGS
register. If the condition is not satisfied, the destination register is not modified. For the memory-based
forms of CMOVcc, memory-related exceptions may be reported even if the condition is false. In 64-bit
mode, CMOVcc with a 32-bit operand size will clear the upper 32 bits of the destination register even
if the condition is false.

The mnemonics of CMOVcc instructions denote the condition that must be satisfied. Most assemblers
provide instruction mnemonics with A (above) and B (below) tags to supply the semantics for
manipulating unsigned integers. Those with G (greater than) and L (less than) tags deal with signed
integers. Many opcodes may be represented by synonymous mnemonics. For example, the CMOVL
instruction is synonymous with the CMOVNGE instruction and denote the instruction with the opcode
OF 4C.

The feature flag CPUID Fn0000 0001 EDX[CMOV] or CPUID Fn8000 0001 EDX[CMOV] =1
indicates support for CMOVcc instructions on a particular processor implementation.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Mnemonic Opcode Description
CMOVO reg16, reg/mem16
CMOVO reg32, reg/mem32 OF 40 /r Move if overflow (OF = 1).

CMOVO reg64, reg/mem64

CMOVNO reg16, reg/mem16
CMOVNO reg32, reg/mem32 OF 41 /r Move if not overflow (OF = 0).
CMOVNO reg64, reg/mem64

CMOVB reg16, reg/mem16
CMOVB reg32, reg/mem32 OF 42 /r Move if below (CF = 1).
CMOVB reg64, reg/mem64

CMOVC reg16, reg/mem16
CMOVC reg32, reg/mem32 OF 42 /r Move if carry (CF = 1).
CMOVC regb4, reg/mem64

CMOVNAE reg16, reg/mem16
CMOVNAE reg32, reg/mem32 OF 42 /r Move if not above or equal (CF = 1).
CMOVNAE reg64, reg/mem64

CMOVNB reg16,reg/mem16
CMOVNB reg32,reg/mem32 OF 43 Ir Move if not below (CF = 0).
CMOVNB reg64,reg/mem64

CMOVNC reg16,reg/mem16
CMOVNC reg32,reg/mem32 OF 43 Ir Move if not carry (CF = 0).
CMOVNC reg64,reg/mem64

General-Purpose CMOVcce 145
Instruction Reference

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
Mnemonic Opcode Description

CMOVAE regl16, reg/mem16

CMOVAE reg32, reg/mem32 OF 43 /r Move if above or equal (CF = 0).

CMOVAE reg64, reg/mem64

CMOVZ reg16, reg/mem16
CMOVZ reg32, reg/mem32 OF 44 Ir Move if zero (ZF = 1).
CMOVZ regb64, reg/mem64

CMOVE reg16, reg/mem16
CMOVE reg32, reg/mem32 OF 44 /r Move if equal (ZF =1).
CMOVE reg64, reg/mem64

CMOVNZ reg16, reg/mem16
CMOVNZ reg32, reg/mem32 OF 45 /r Move if not zero (ZF = 0).
CMOVNLZ reg64, reg/mem64

CMOVNE reg16, reg/mem16
CMOVNE reg32, reg/mem32 OF 45 /r Move if not equal (ZF = 0).
CMOVNE reg64, reg/mem64

CMOVBE regl6, reg/mem16
CMOVBE reg32, reg/mem32 OF 46 /r Move if below or equal (CF = 1 or ZF = 1).
CMOVBE reg64, reg/mem64

CMOVNA reg16, reg/mem16
CMOVNA reg32, reg/mem32 OF 46 /r Move if not above (CF = 1 or ZF = 1).
CMOVNA reg64, reg/mem64

CMOVNBE reg16, reg/mem16
CMOVNBE reg32,reg/mem32 OF 47 Ir Move if not below or equal (CF = 0 and ZF = 0).
CMOVNBE reg64,reg/mem64

CMOVA regl16, reg/mem16
CMOVA reg32, reg/mem32 OF 47 Ir Move if above (CF = 0 and ZF = 0).
CMOVA reg64, reg/mem64

CMOVS reg16, reg/mem16
CMOVS reg32, reg/mem32 OF 48 Ir Move if sign (SF =1).
CMOVS reg64, reg/mem64

CMOVNS reg16, reg/mem16
CMOVNS reg32, reg/mem32 OF 49 /r Move if not sign (SF = 0).
CMOVNS reg64, reg/mem64

CMOVP reg16, reg/mem16
CMOVP reg32, reg/mem32 OF 4A Ir Move if parity (PF = 1).
CMOVP reg64, reg/mem64

CMOVPE reg16, reg/mem16
CMOVPE reg32, reg/mem32 OF 4A Ir Move if parity even (PF = 1).
CMOVPE reg64, reg/mem64

CMOVNP reg16, reg/mem16
CMOVNP reg32, reg/mem32 OF 4B /r Move if not parity (PF = 0).
CMOVNP reg64, reg/mem64

CMOVPO regl6, reg/mem16
CMOVPO reg32, reg/mem32 OF 4B /Ir Move if parity odd (PF = 0).
CMOVPO reg64, reg/mem64

146 CMOVcc General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

Mnemonic Opcode Description
CMOVL reg16, reg/mem16
CMOVL reg32, reg/mem32 OF 4C Ir Move if less (SF <> OF).
CMOVL reg64, reg/mem64
CMOVNGE reg16, reg/mem16
CMOVNGE reg32, reg/mem32 OF 4C Ir Move if not greater or equal (SF <> OF).
CMOVNGE reg64, reg/mem64
CMOVNL reg16, reg/mem16
CMOVNL reg32, reg/mem32 OF 4D /Ir Move if not less (SF = OF).
CMOVNL reg64, reg/mem64
CMOVGE reg16, reg/mem16
CMOVGE reg32, reg/mem32 OF 4D /Ir Move if greater or equal (SF = OF).
CMOVGE reg64, reg/mem64
CMOVLE regl6, reg/mem16
CMOVLE reg32, reg/mem32 OF 4E Ir Move if less or equal (ZF = 1 or SF <> OF).
CMOVLE reg64, reg/mem64
CMOVNG reg16, reg/mem16
CMOVNG reg32, reg/mem32 OF 4E Ir Move if not greater (ZF = 1 or SF <> OF).
CMOVNG reg64, reg/mem64
CMOVNLE reg16, reg/mem16
CMOVNLE reg32, reg/mem32 OF 4F /Ir Move if not less or equal (ZF = 0 and SF = OF).
CMOVNLE reg64, reg/mem64
CMOVG regl6, reg/mem16
CMOVG reg32, reg/mem32 OF 4F /r Move if greater (ZF = 0 and SF = OF).
CMOVG reg64, reg/mem64
Related Instructions
MOV
rFLAGS Affected
None
Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
Invalid opcode CMOVcec instruction is not supported, as indicated by CPUID
#UD P ’ X X X Fn0000_0001_EDX[CMOQOV] or Fn8000_0001_EDX[CMOQV] =
0.
A memory address exceeded the stack segment limit or was
Stack, #SS X X X non-canonical.
i X X A memory address exceeded a data segment limit or was non-
General protection, canonicai.
#GP
X A null data segment was used to reference memory.

General-Purpose

Instruction Reference

CMOVcc 147

AMDAQ

AMDG64 Technology

24594—Rev. 3.25—December 2017

Virtual| Protecte
Exception Real| 8086 d Cause of Exception
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.
148 CMOVcc General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

CMP Compare

Compares the contents of a register or memory location (first operand) with an immediate value or the
contents of a register or memory location (second operand), and sets or clears the status flags in the
rFLAGS register to reflect the results. To perform the comparison, the instruction subtracts the second
operand from the first operand and sets the status flags in the same manner as the SUB instruction, but
does not alter the first operand. If the second operand is an immediate value, the instruction sign-
extends the value to the length of the first operand.

Use the CMP instruction to set the condition codes for a subsequent conditional jump (Jcc),
conditional move (CMOVCcc), or conditional SETcc instruction. Appendix F, “Instruction Effects on
RFLAGS” shows how instructions affect the rTFLAGS status flags.

Mnemonic Opcode Description

. ; Compare an 8-bit immediate value with the contents of
CMP AL, imm8 3Cib the AL register.

: : Compare a 16-bit immediate value with the contents of
CMP AX, imm16 3D iw the AX register.

: : Compare a 32-bit immediate value with the contents of
CMP EAX, imm32 3D id the EAX register.

3Did Compare a 32-bit immediate value with the contents of

CMP RAX, imm32 the RAX register.

80/7 ib Compare an 8-bit immediate value with the contents of

CMP reg/mems, imm8 an 8-bit register or memory operand.

81 /7 iw Compare a 16-bitimmediate value with the contents of a

CMP reg/mem18, imm16 16-bit register or memory operand.

81 /7 id Compare a 32-bit immediate value with the contents of a

CMP reg/mem32, imm32 32-bit register or memory operand.

; - Compare a 32-bit signed immediate value with the
CMP reg/mem64, imm32 81/7id contents of a 64-bit register or memory operand.

Compare an 8-bit signed immediate value with the

CMP reg/mem16, imm8 83/7ib contents of a 16-bit register or memory operand.

CMP regimemz, imme s3;7ip Compare an &bl sgned immediate ualue wih he
CMP regimemea, imms 837 Sompere an &bl saned immediate value it e
sgi Compare ihe contete of an &bl ogiser o memary
CMP regimemis, egle dgn Sompare the contents ofa 16 i reqster o memory
CMP regimem32, reg32 39 /r Compare the contents of a 32-bit register or memory

operand with the contents of a 32-bit register.

Compare the contents of a 64-bit register or memory
CMP reg/mem64, reg64 39k operand with the contents of a 64-bit register.

General-Purpose CMP 149
Instruction Reference

AMDAQ

AMDG64 Technology

Mnemonic

CMP reg8, reg/mem8
CMP reg16, reg/mem16
CMP reg32, reg/mem32

CMP regb64, reg/mem64

When interpreting operands as unsigned, flag settings are as follows:

Opcode

3AIr
3B /r
3B /Ir

3B /r

24594—Rev. 3.25—December 2017

Description

Compare the contents of an 8-bit register with the
contents of an 8-bit register or memory operand.

Compare the contents of a 16-bit register with the
contents of a 16-bit register or memory operand.

Compare the contents of a 32-bit register with the
contents of a 32-bit register or memory operand.

Compare the contents of a 64-bit register with the
contents of a 64-bit register or memory operand.

Operands CF ZF
dest > source 0 0
dest = source 0 1
dest < source 1 0
When interpreting operands as signed, flag settings are as follows:
Operands OF ZF
dest > source SF 0
dest = source 0 1
dest < source NOT SF 0
Related Instructions
SUB, CMPSx, SCASX
150 CMP General-Purpose

Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| M| M|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.

Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #SS X X non-canonical.
. X X A memory address exceeded a data segment limit or was non-
General protection, canonicai.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

CMP 151

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

CMPS Compare Strings
CMPSB
CMPSW
CMPSD
CMPSQ

Compares the bytes, words, doublewords, or quadwords pointed to by the rSI and rDI registers, sets or
clears the status flags of the rTFLAGS register to reflect the results, and then increments or decrements
the rSI and rDI registers according to the state of the DF flag in the rFLAGS register. To perform the
comparison, the instruction subtracts the second operand from the first operand and sets the status
flags in the same manner as the SUB instruction, but does not alter the first operand. The two operands
must be the same size.

If the DF flag is 0, the instruction increments rSI and rDI; otherwise, it decrements the pointers. It
increments or decrements the pointers by 1, 2, 4, or 8, depending on the size of the operands.

The forms of the CMPSx instruction with explicit operands address the first operand at seg:[rSI]. The
value of seg defaults to the DS segment, but may be overridden by a segment prefix. These instructions
always address the second operand at ES:[rDI]. ES may not be overridden. The explicit operands serve
only to specify the type (size) of the values being compared and the segment used by the first operand.

The no-operands forms of the instruction use the DS:[rSI] and ES:[rDI] registers to point to the values
to be compared. The mnemonic determines the size of the operands.

Do not confuse this CMPSD instruction with the same-mnemonic CMPSD (compare scalar double-
precision floating-point) instruction in the 128-bit media instruction set. Assemblers can distinguish
the instructions by the number and type of operands.

For block comparisons, the CMPS instruction supports the REPE or REPZ prefixes (they are
synonyms) and the REPNE or REPNZ prefixes (they are synonyms). For details about the REP
prefixes, see “Repeat Prefixes” on page 12. If a conditional jump instruction like JL follows a CMPSX
instruction, the jump occurs if the value of the seg:[rSI] operand is less than the ES:[rDI] operand. This
action allows lexicographical comparisons of string or array elements. A CMPSX instruction can also
operate inside a loop controlled by the LOOPcC instruction.

Mnemonic Opcode Description

A6 Compare the byte at DS:rSl with the byte at ES:rDI and

CMPS mems, mem8 then increment or decrement rSl and rDI.

Compare the word at DS:rSl with the word at ES:rDI and
CMPS mem16, mem16 A7 then increment or decrement rSl and rDI.

Compare the doubleword at DS:rSI with the doubleword
CMPS mem32, mem32 A7 at ES:rDl and then increment or decrement rS| and rDlI.

Compare the quadword at DS:rSl with the quadword at
CMPS mem64, mem64 A7 ES:rDI and then increment or decrement rS| and rDI.

152 CMPSx General-Purpose
Instruction Reference

AMDA

24594—Rev

. 3.25—December 2017

AMDG64 Technology

Mnemonic Opcode Description
Compare the byte at DS:rSl with the byte at ES:rDI and
CMPSB AB then increment or decrement rSl and rDI.
Compare the word at DS:rSl with the word at ES:rDI and
CMPSW A7 then increment or decrement rSl and rDI.
CMPSD A7 Compare the doubleword at DS:rS| with the doubleword
at ES:rDI and then increment or decrement rSl and rDI.
Compare the quadword at DS:rSl with the quadword at
CMPSQ A7 ES:rDI and then increment or decrement rSl and rDI.
Related Instructions
CMP, SCASX
rFLAGS Affected
ID |VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF
M M M M M M
21 20 | 19 | 18 | 17 | 16 | 14 13:12 11 10 9 8 7 6 4 2 0

Undefined flags are U.

Note: Bits 31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #58 X X X non-canonical.
i X X X A memory address exceeded a data segment limit or was non-
General protection, canonicai.
#GP
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose
Instruction Reference

CMPSx

153

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

CMPXCHG Compare and Exchange

Compares the value in the AL, AX, EAX, or RAX register with the value in a register or a memory
location (first operand). If the two values are equal, the instruction copies the value in the second
operand to the first operand and sets the ZF flag in the tTFLAGS register to 1. Otherwise, it copies the
value in the first operand to the AL, AX, EAX, or RAX register and clears the ZF flag to 0.

The OF, SF, AF, PF, and CF flags are set to reflect the results of the compare.

When the first operand is a memory operand, CMPXCHG always does a read-modify-write on the
memory operand. If the compared operands were unequal, CMPXCHG writes the same value to the
memory operand that was read.

The forms of the CMPXCHG instruction that write to memory support the LOCK prefix. For details
about the LOCK prefix, see “Lock Prefix” on page 11.

Mnemonic Opcode Description

Compare AL register with an 8-bit register or memory
CMPXCHG reg/mems8, reg8 OF BO/r location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AL.

Compare AX register with a 16-bit register or memory
CMPXCHG reg/mem16, reg16 OF B1/r location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to AX.

Compare EAX register with a 32-bit register or memory
CMPXCHG reg/mem32, reg32 OF B1/r location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to EAX.

Compare RAX register with a 64-bit register or memory
CMPXCHG reg/mem64, reg64 OFB1/r location. If equal, copy the second operand to the first
operand. Otherwise, copy the first operand to RAX.

Related Instructions

CMPXCHGS8B, CMPXCHGI16B

154 CMPXCHG General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| M| M|M

21 120 | 19 | 18 | 17 | 16 | 14 13:12 M1|10| 9 | 8 | 7 | 6 | 4| 2|0

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
A memory address exceeded the stack segment limit or was
Stack, #5S X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X ;
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

CMPXCHG 155

AMDAQ

AMDG64 Technology 24594—Rev. 3.25—December 2017
CMPXCHGS8B Compare and Exchange Eight Bytes
CMPXCHG16B Compare and Exchange Sixteen Bytes

Compares the value in the rDX:rAX registers with a 64-bit or 128-bit value in the specified memory
location. If the values are equal, the instruction copies the value in the rCX:rBX registers to the
memory location and sets the zero flag (ZF) of the tFLAGS register to 1. Otherwise, it copies the value
in memory to the rDX:rAX registers and clears ZF to 0.

If the effective operand size is 16-bit or 32-bit, the CMPXCHGSB instruction is used. This instruction
uses the EDX:EAX and ECX:EBX register operands and a 64-bit memory operand. If the effective
operand size is 64-bit, the CMPXCHG16B instruction is used; this instruction uses RDX:RAX register
operands and a 128-bit memory operand.

The CMPXCHGS8B and CMPXCHG16B instructions always do a read-modify-write on the memory
operand. If the compared operands were unequal, the instructions write the same value to the memory
operand that was read.

The CMPXCHG8B and CMPXCHGI16B instructions support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

Support for the CMPXCHGS8B and CMPXCHG16B instructions is implementation dependent.
Support for the CMPXCHG8B instruction 1is indicated by CPUID
Fn0000 0001 EDX[CMPXCHGS8B] or Fn8000 0001 EDX[CMPXCHGS8B] = 1. Support for the
CMPXCHG16B instruction is indicated by CPUID Fn0000 0001 ECX[CMPXCHG16B]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

The memory operand used by CMPXCHG16B must be 16-byte aligned or else a general-protection
exception is generated.

Mnemonic Opcode Description

Compare EDX:EAX register to 64-bit memory location.
If equal, set the zero flag (ZF) to 1 and copy the

CMPXCHG8B mem64 OF C7/1 m64 ECX:EBX register to the memory location. Otherwise,
copy the memory location to EDX:EAX and clear the
zero flag.

Compare RDX:RAX register to 128-bit memory location.
OF C7 /1 If equal, set the zero flag (ZF) to 1 and copy the

CMPXCHG16B mem128 RCX:RBX register to the memory location. Otherwise,

m128 copy the memory location to RDX:RAX and clear the
zero flag.
Related Instructions
CMPXCHG
156 CMPXCHGS8/16B General-Purpose

Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL |OF |DF | IF | TF | SF | ZF | AF | PF | CF
M

21 120 |19 |18 |17 |16 | 14 | 1312 |11 |10 | 9 | 8 | 7 | 6 | 4 | 2 | O

Note: Bits31:22, 15,5, 3, and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
CMPXCHGSB instruction is not supported, as indicated by
X X CPUID Fn0000_0001_EDX[CMPXCHGS8B] or
: Fn8000_0001_EDX[CMPXCHGS8B] = 0.
Invalid opcode,
#UD CMPXCHG16B instruction is not supported, as indicated by
CPUID Fn0000_0001_ECX[CMPXCHG16B] = 0.
X X The operand was a register.
A memory address exceeded the stack segment limit or was
Stack, #5S X non-canonical.
X X A memory address exceeded a data segment limit or was non-
canonical.
General protection, X The destination operand was in a non-writable segment.
#GP X A null data segment was used to reference memory.
X The memory operand for CMPXCHG16B was not aligned on a
16-byte boundary.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose

Instruction Reference

CMPXCHGB8/16B 157

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

CPUID Processor Identification

Provides information about the processor and its capabilities through a number of different functions.
Software should load the number of the CPUID function to execute into the EAX register before
executing the CPUID instruction. The processor returns information in the EAX, EBX, ECX, and
EDX registers; the contents and format of these registers depend on the function.

The architecture supports CPUID information about standard functions and extended functions. The
standard functions have numbers in the 0000 xxxxh series (for example, standard function 1). To
determine the largest standard function number that a processor supports, execute CPUID function 0.

The extended functions have numbers in the 8000 Xxxxxh series (for example, extended
function 8000 _0001h). To determine the largest extended function number that a processor supports,
execute CPUID extended function 8000 _0000h. If the value returned in EAX is greater than
8000 _0000h, the processor supports extended functions.

Software operating at any privilege level can execute the CPUID instruction to collect this
information. In 64-bit mode, this instruction works the same as in legacy mode except that it zero-
extends 32-bit register results to 64 bits.

CPUID is a serializing instruction.

Mnemonic Opcode Description

Returns information about the processor and its
CPUID OF A2 capabilities. EAX specifies the function number, and the
data is returned in EAX, EBX, ECX, EDX.

Testing for the CPUID Instruction

To avoid an invalid-opcode exception (#UD) on those processor implementations that do not support
the CPUID instruction, software must first test to determine if the CPUID instruction is supported.
Support for the CPUID instruction is indicated by the ability to write the ID bit in the rTFLAGS register.
Normally, 32-bit software uses the PUSHFD and POPFD instructions in an attempt to write
rFLAGS.ID. After reading the updated rFLAGS.ID bit, a comparison determines if the operation
changed its value. If the value changed, the processor executing the code supports the CPUID
instruction. If the value did not change, rFLAGS.ID is not writable, and the processor does not support
the CPUID instruction.

The following code sample shows how to test for the presence of the CPUID instruction using 32-bit
code.

pushfd ; save EFLAGS
pop eax store EFLAGS i n EAX

nov ebx, eax ; save in EBX for later testing
Xor eax, 00200000h ; toggle bit 21
push eax ; push to stack
popfd ; save changed EAX to EFLAGS
158 CPUID General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

pushfd ; push EFLAGS to TOS

pop eax ; store EFLAGS in EAX

cnp eax, ebx ; see if bit 21 has changed
jz NO_CPUI D ; if no change, no CPU D

Standard Function 0 and Extended Function 8000_0000h

CPUID standard function 0 loads the EAX register with the largest CPUID standard function number
supported by the processor implementation; similarly, CPUID extended function 8000 _0000h loads
the EAX register with the largest extended function number supported.

Standard function 0 and extended function 8000 0000h both load a 12-character string into the EBX,
EDX, and ECX registers identifying the processor vendor. For AMD processors, the string is
Aut hent i cAVD. This string informs software that it should follow the AMD CPUID definition for
subsequent CPUID function calls. If the function returns another vendor’s string, software must use
that vendor’s CPUID definition when interpreting the results of subsequent CPUID function calls.
Table 3-2 shows the contents of the EBX, EDX, and ECX registers after executing function 0 on an
AMD processor.

Table 3-2. Processor Vendor Return Values

Register Return Value ASCII Characters
EBX 6874_7541h “ht uA
EDX 6974 _6E65h “i t ne"
ECX 444D _4163h “DMAC”

For a description of all feature flags related to instruction subset support, see Appendix D, “Instruction
Subsets and CPUID Feature Flags,” on page 531. For a description of all defined feature numbers and
return values, see Appendix E, “Obtaining Processor Information Via the CPUID Instruction,” on
page 601.

Related Instructions

None

rFLAGS Affected

None

Exceptions

None

General-Purpose CPUID 159
Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

CRC32 CRC32 Cyclical Redundancy Check

Performs one step of a 32-bit cyclic redundancy check.

The first source, which is also the destination, is a doubleword value in either a 32-bit or 64-bit GPR
depending on the presence of a REX prefix and the value of the REX.W bit. The second source is a
GPR or memory location of width 8, 16, or 32 bits. A vector of width 40, 48, or 64 bits is derived from
the two operands as follows:

1. The low-order 32 bits of the first operand is bit-wise inverted and shifted left by the width of the
second operand.

2. The second operand is bit-wise inverted and shifted left by 32 bits
3. The results of steps 1 and 2 are xor ed.

This vector is interpreted as a polynomial of degree 40, 48, or 64 over the field of two elements (i.e., bit
11s interpreted as the coefficient of X*1). This polynomial is divided by the polynomial of degree 32
that is similarly represented by the vector 11EDC6F41h. (The division admits an efficient iterative
implementation based on the xor operation.) The remainder is encoded as a 32-bit vector, which is
bit-wise inverted and written to the destination. In the case of a 64-bit destination, the upper 32 bits are
cleared.

In an application of the CRC algorithm, a data block is partitioned into byte, word, or doubleword
segments and CRC32 is executed iteratively, once for each segment.

CRC32 is a SSE4.2 instruction. Support for SSE4.2 instructions is indicated by CPUID
Fn0000 0001 ECX[SSE42]=1.

For more information on using the CPUID instruction, see the instruction reference page for the
CPUID instruction on page 158. For a description of all feature flags related to instruction subset
support, see Appendix D, “Instruction Subsets and CPUID Feature Flags,” on page 531.

Instruction Encoding

Mnemonic Encoding Notes
CRC32 reg32, reg/mem8 F20F 38 FO /r Perform CRC32 operation on 8-bit values
CRC32 reg32, reg/mem8 F2 REX OF 38 FO /r Enceding using REX prefix allows access to

CRC32 reg32, reg/mem16 F20F 38 F1/r Effective operand size determines size of second
CRC32reg32, reg/mem32 F2 OF 38 F1 /r operand.

CRC32 reg64, reg/mem8 F2REXWOF38F0/r REXW=1.
CRC32 reg64, reg/mem64 F2REXWOF38F1/r REXW=1.

160 CRC32 General-Purpose
Instruction Reference

AMDA

24594—Rev. 3.25—December 2017

AMDG64 Technology

rFLAGS Affected
None
Exceptions
Mode
Exception Virtual Cause of Exception
Real| 8086 [Protected
i X X X Lock prefix used
Invalid opcode, - - —
#UD X X X SSE42 instructions are not supported as indicated by CPUID
Fn0000_0001_ECX[SSE42] = 0.
A memory address exceeded the stack segment limit or was
Stack, #8S X X X non-canonical.
A memory address exceeded a data segment limit or was non-
X X X .
. canonical.
General protection,
#GP X The destination operand was in a non-writable segment.
X A null data segment was used to reference memory.
Page fault, #PF X X A page fault resulted from the execution of the instruction.
Alignment check, X An unaligned memory reference was performed while
#AC alignment checking was enabled.

General-Purpose
Instruction Reference

CRC32

161

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

DAA Decimal Adjust after Addition

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal carry out of either nibble of AL.

Use this instruction to adjust the result of a byte ADD instruction that performed the binary addition of
one 2-digit packed BCD values to another.

The instruction performs the adjustment by adding 06h to AL if the lower nibble is greater than 9 or if
AF = 1. Then 60h is added to AL if the original AL was greater than 99h or if CF = 1.

If the lower nibble of AL was adjusted, the AF flag is set to 1. Otherwise AF is not modified. If the
upper nibble of AL was adjusted, the CF flag is set to 1. Otherwise, CF is not modified. SF, ZF, and PF
are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Mnemonic Opcode Description

Decimal adjust AL.
DAA 27 (Invalid in 64-bit mode.)

rFLAGS Affected

ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

U M M M M M
21 1 20 | 19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits31:22, 15,5, 3,and 1 are reserved. A flag setto 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
E&’Sﬁd opcode, X This instruction was executed in 64-bit mode.
162 DAA General-Purpose

Instruction Reference

AMDA
24594—Rev. 3.25—December 2017 AMDG64 Technology

DAS Decimal Adjust after Subtraction

Adjusts the value in the AL register into a packed BCD result and sets the CF and AF flags in the
rFLAGS register to indicate a decimal borrow.

Use this instruction to adjust the result of a byte SUB instruction that performed a binary subtraction of
one 2-digit, packed BCD value from another.

This instruction performs the adjustment by subtracting 06h from AL if the lower nibble is greater than
9 or if AF = 1. Then 60h is subtracted from AL if the original AL was greater than 9%h or if CF = 1.

If the adjustment changes the lower nibble of AL, the AF flag is set to 1; otherwise AF is not modified.
If the adjustment results in a borrow for either nibble of AL, the CF flag is set to 1; otherwise CF is not
modified. The SF, ZF, and PF flags are set according to the final value of AL.

Using this instruction in 64-bit mode generates an invalid-opcode (#UD) exception.

Mnemonic Opcode Description
Decimal adjusts AL after subtraction.
DAS 2F (Invalid in 64-bit mode.)

Related Instructions

DAA
rFLAGS Affected
ID |VIP|VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

U M M M M M

21 120 |19 | 18 | 17 | 16 | 14 13:12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15,5, 3, and 1 are reserved. A flag set to 1 or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

Exceptions
Virtual | Protecte
Exception Real| 8086 d Cause of Exception
;I#nl\J/S”d opcode, X This instruction was executed in 64-bit mode.
General-Purpose DAS 163

Instruction Reference

AMDA1
AMDG64 Technology 24594—Rev. 3.25—December 2017

DEC Decrement by 1

Subtracts 1 from the specified register or memory location. The CF flag is not affected.

The one-byte forms of this instruction (opcodes 48 through 4F) are used as REX prefixes in 64-bit
mode. See “REX Prefix” on page 14.

The forms of the DEC instruction that write to memory support the LOCK prefix. For details about the
LOCK prefix, see “Lock Prefix” on page 11.

To perform a decrement operation that updates the CF flag, use a SUB instruction with an immediate
operand of 1.

Mnemonic Opcode Description
DEC reg/mem8 FE /1 Ilgtzgﬁaornir;t %r.we contents of an 8-bit register or memory
DEC reg/mem16 FF /1 Bﬁg;ﬁm%}t ’%i.we contents of a 16-bit register or memory
DEC reg/mem32 FF /1 Exe:g;%nr:ebr;t ’;r.\e contents of a 32-bit register or memory
DEC reg/mem64 FE /1 E’igiﬁ)r;\%r;lt Ef.\e contents of a 64-bit register or memory
Qe e o Soutegery
DEC reg32 48 +rd Decrement the contents of a 32-bit register by 1.

(See “REX Prefix” on page 14.)
Related Instructions
INC, SUB

rFLAGS Affected

ID |VIP | VIF| AC | VM | RF | NT IOPL OF | DF | IF | TF | SF | ZF | AF | PF | CF

M M M M M

21120 | 19 | 18 | 17 | 16